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Abstract
The purpose of this study was to determine the form of the relation between the mean amplitude and variance of motor-evoked 
potentials (MEP). To this end, single-pulse transcranial magnetic stimulation (TMS) was applied over the motor cortex of 
seventeen neurologically normal adult human subjects. The coil was positioned at a locus on the scalp that elicited an MEP 
in the first dorsal interosseous (FDI) at the lowest stimulus intensity. The subjects were instructed to maintain tonic activity 
in the FDI of 5 or 10% of the maximum voluntary contraction (MVC). The relation between MEP variance and amplitude 
was found to have an inverted parabolic shape, with maximal variance occurring near the half-maximal MEP amplitude. 
The coefficient of variation CV of MEPs decreased approximately as a rectangular hyperbolic function of MEP amplitude 
(i.e. ~ 1/MEP). A probabilistic model is proposed to explain the inverted parabolic relation between MEP variance and MEP 
amplitude, as well as the sigmoid shape of the MEP input–output relation (i.e. stimulus–response curve). The model is based 
on a description of α-motoneurons as binary threshold units, with unit thresholds distributed according to a positively skewed 
probability density function. The units are driven by noisy synaptic input currents having a Gaussian distribution. The model 
predicts an inverse parabolic relation between MEP variance and amplitude and a sigmoid input–output relation, as experi-
mentally observed. Furthermore, increasing model motoneuron excitability by increasing the background synaptic drive 
increases MEP variability independently of MEP size, a surprising prediction. The model also explains the approximately 
rectangular hyperbolic relation between CV and MEP amplitude. The implications of these results for the interpretation of 
neurophysiological experiments and the statistical analysis of MEPs are discussed.

Keywords Motor-evoked potential (MEP) · Transcranial magnetic stimulation (TMS) · Brain stimulation · MEP variance · 
Input–output curve

Introduction

The input–output (recruitment) curves of monosynap-
tic reflexes (MSR) and MEPs are a sigmoid functions of 
stimulus intensity (Devanne et al. 1997; Hunt 1955; Rall 
1955a). The variance of MSRs as a function of their ampli-
tude can be described by an inverted parabola (Rudomin and 
Dutton 1969; Rudomin 1980). The relation between MEP 
variance and amplitude, however, has not been determined. 

Knowledge of this relation is important for the interpreta-
tion of neurophysiological experiments and their statistical 
analysis. The form of these curves and how they change with 
the level of α-motoneuron drive have yet to be explained in 
neurophysiological and mathematical terms. Although Rall 
has formulated a probability theory-based graphical model 
(Rall 1955b) and Capaday (1997) formulated an empirical 
graphical model, neither addresses the stated issues con-
jointly. Relatedly, the coefficient of variation CV of MEPs 
is inversely proportional to amplitude (e.g. Capaday et al. 
1999; Darling et al. 2006; Devanne et al. 1997; Klein-Flugge 
et al. 2013), but the proper mathematical description of this 
relation and its neurophysiological basis remain to be estab-
lished. Moreover, Darling et al. (2006) reported that the CV 
of MEPs was lower when subjects maintained tonic motor 
activity compared to rest. It is unclear, however, if the CV 
is in fact independent of MEP amplitude, per se. That is, do 
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MEPs of equal size obtained, respectively, at rest or super-
imposed on tonic background activity have the same CV.

To these ends, experiments were done to determine the 
relation between MEP amplitude and variance, as well as 
to characterize in detail the relation between MEP ampli-
tude and CV . These will be referred to, respectively, as the 
Var–amplitude relation and the CV–amplitude relation. It 
will be shown that the Var–amplitude relation is described 
by an inverted parabola and that the CV–amplitude relation 
resembles a rectangular hyperbola of the form 1/MEP. To 
explain these results, a minimal mathematical model based 
on basic neurophysiological variables was developed. The 
model includes a description of α-motoneurons as binary 
threshold units, with unit threshold currents distributed 
according to a positively skewed probability density func-
tion. The units are driven by Gaussian synaptic input cur-
rents. It is also shown that MEP amplitude distribution his-
tograms change with stimulus intensity and are not described 
by any obvious probability density function, a result also 
explained by the model. The implications of these results for 
the interpretation of neurophysiological experiments and the 
statistical analysis of MEPs are dealt with in the discussion. 
For example, the non-Gaussian statistics of MEPs place limit 
on tests of significance and curve-fitting algorithms.

Materials and methods

Subjects

Experiments were done on 17 healthy subjects (11 males, 
6 females) ranging between 18 and 60 years. All subjects 
participated with their informed consent in accordance with 
the Declaration of Helsinki. The experiments were done at 
Université Laval where the author was on faculty at the time 
and approved by the local ethics committee.

Electromyographic recordings and magnetic 
stimulation

The electromyogram (EMG) was recorded from the first 
dorsal interosseous (FDI) using a pair of surface Ag–AgCl 
disc electrodes (recording diameter 1 mm, separation ~ 1 cm) 
placed over the belly of the muscle. Recordings were made 
from either the left or right FDI, depending on the subject’s 
stated hand dominance. Only two subjects self-described 
themselves as left-handed. The electrodes were attached to 
the skin by O-shaped rings of double-sided adhesive film 
and further secured by a strip of tape. The electrodes were 
shielded right up to the recording surfaces and connected 
to an optically isolated preamplifier by a shielded twisted-
pair cable. The shielded twisted-pair cable reduces mag-
netic interference from the stimulating coil. The reference 

electrode, a large metal plate (3 cm × 9 cm) covered in 
gauze and moistened with saline, was placed high on the 
subject’s arm on the side of the recordings and connected 
to the common input of the preamplifiers. The EMG signals 
were amplified, high-pass filtered at 20 Hz and low-pass 
filtered at 1 kHz prior to sampling (4 kHz) by an analogue-
to-digital converter (A/D). The same EMG signals were also 
rectified and filtered (20–100 Hz) for sampling by a separate 
A/D converter channel. Magnetic stimuli were applied over 
the scalp using a Cadwell MES-10 electromagnetic stimula-
tor, of maximum magnetic field strength 2 T, with a coned, 
double-D-shaped, focal coil. Each D-shaped wing of the coil 
was 7 cm long and 8 cm wide. The coil was shielded with a 
conductive epoxy (Nickel Print, GC electronics), insulated 
with electrical tape and the conductive coating grounded, 
resulting in little or no stimulus artefact.

Experimental procedures

The coil was placed in contact with the scalp with the long 
axis of the intersection of its two loops pointing forwards 
and the coil handle backwards. To activate the FDI muscle, 
the coil was placed parallel to the sagittal midline and its 
mid-point was aligned antero-posteriorly at C3 or C4. Fine 
adjustments of coil position were made at the beginning of 
the experiments to identify the optimal location for each sub-
ject. Surface markings were then drawn on the scalp to serve 
as a reference grid against which the coil was positioned. 
The coil was maintained on the head by the experimenter 
and its position and orientation relative to the reference 
grid were constantly checked during the experiment. The 
inter-stimulus interval (ISI) varied randomly with a uniform 
distribution between 3 and 5 s. These intervals were used 
to minimize fatigue in these protracted experiments. Time 
series analysis of MEP amplitude records shows that the 
autocorrelation function decays to non-significant levels 
within an interval of three seconds, or less. Stimulus inten-
sity was measured as a percentage of the maximum current 
which could be discharged through the coil.

Subjects sat in a chair and faced an analogue meter placed 
1 m in front of them. The meter was calibrated so that a full-
scale deflection of the needle corresponded to the maximum 
sustained isometric contraction of the muscle, as measured 
by the rectified and filtered (bandpass 10–20 Hz) surface 
electromyogram. The subject’s right (or left) forearm rested 
on a table in the prone position with the distal joint of the 
index finger placed in a mould attached to a rigid stop. 
The experimental procedure required the subject to exert 
a prescribed level of FDI tonic activity, either 5% or 10% 
of MVC, depending on which level each subject was more 
comfortable maintaining. With background tonic activity, 
one can at least be sure of the subject’s state with respect to 
at least motoneuron pool excitability at the time of the MEP. 
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The motor cortex was activated with magnetic stimuli dur-
ing tonic contraction. The usual procedure was to increase 
the stimulus intensity starting at a value about 5–10% below 
threshold and increasing it in steps of 2–4% until saturation 
of the MEP amplitude. In some cases, the stimulus strength 
varied randomly. At each stimulus intensity, at least 8 stimuli 
were delivered to the motor cortex and the MEPs averaged 
and displayed in real time. The variance and CV of the elic-
ited MEPs were also calculated in real time and stored for 
further analysis.

Five subjects were used to determine the amplitude dis-
tribution histogram of MEPs at two stimulus intensities, one 
near the active motor threshold (AMT) and the other near 
the S50 value. Subjects were asked to maintain a tonic level 
of background EMG activity in the FDI of either 5% or 10% 
of MVC, whilst TMS was applied to the scalp at random 
equiprobable intervals of between 3 and 5 s. Typically 64 
consecutive MEPs were elicited in these experiments. In 
one case, 128 MEPs were elicited, with a brief rest period 
halfway. As repeated stimulation at maximal intensity was 
not well tolerated, no amplitude histograms were obtained 
for near maximal intensities.

Data analysis and statistics

At each stimulus intensity and contraction level, the rectified 
and unrectified MEPs were averaged over a time segment of 
250 ms, including 50 ms prior to the stimulus. As the MEP 
recordings were essentially artefact-free, the mean level of 
background EMG activity was measured in the 15–20 ms 
interval before the onset of the MEP, not before the stimu-
lus. This provides a true measure of the background EMG 
level upon which the MEP occurs. The peak-to-peak (p–p) 
values of the averaged responses were measured and plotted 
against the stimulus intensity. The Boltzmann sigmoid func-
tion (Devanne et al. 1997) was used to fit the data points. 
The function relates the amplitude of the response MEP to 
the stimulus intensity S and is given by,

where MEPmax is the maximum value or plateau of the 
relation, S50 is the stimulus intensity required to obtain a 
response 50% of the maximum ( MEP1∕2 ), and k is the slope 
parameter. The inverse of the slope parameter 1∕k is directly 
proportional to the maximal steepness of the function, which 
occurs at S50 and has a value of MEPmax∕4k . Note that in 
normalized form MEP(S)∕MEPmax , Eq. 1 can be interpreted 
as a measure of the level of motoneuron pool recruitment, as 
will be discussed. The Levenberg–Marquard nonlinear least-
mean-squares algorithm was used to fit Boltzmann function 
to the data points (Press et al. 1986). Further details on the 

(1)MEP(S) =
MEPmax

1 + e(S50−S)∕k
,

Boltzmann equation can be obtained from previous publica-
tions of this laboratory (Capaday et al. 1999; Devanne et al. 
1997; Kouchtir-Devanne et al. 2012). The variance of the 
average MEP at each stimulus intensity was calculated from 
the p–p amplitudes of the individual responses.

The data of the MEP amplitude distribution histogram 
experiments were analysed as follows. The histograms were 
constructed by binning MEP amplitudes (twenty bins) and 
the mean and variance of the distribution were calculated 
for each case. To determine whether the fluctuations of MEP 
amplitude from stimulus to stimulus were due to fluctuations 
of the background level of voluntary EMG activity, a linear 
regression analysis of MEP amplitude vs. mean background 
EMG was done for each case. The background EMG level 
was measured in the brief 20 ms interval between stimulus 
delivery and MEP onset. Such a near instantaneous measure 
is possible in recording conditions with little or no stimu-
lus artefact. The best estimate of the level of activity at the 
time of an evoked response is one that is closest in time 
to it (i.e. the level of activity at which the response actu-
ally occurs). Estimating the level of activity 50 ms before 
stimulus onset leaves a time gap of uncertainty of 70–80 ms. 
The current method reduces this uncertainty to ~ 20 ms. The 
method should also be applicable to muscles with a short 
MEP latency, such as the biceps, as long as the recording 
is artefact-free and the estimation interval can be increased 
to improve the statistics. It should be understood that the 
purpose of estimating the mean background EMG in a short 
interval just before MEP onset was to be sure that MEP 
variability was not significantly due to fluctuations of the 
background EMG, leaving factors upstream of the motoneu-
ron pool as the main source of MEP variability. This issue 
is dealt with in greater detail in the results and discussion 
section.

Mathematical model

The mathematical model described here was developed 
to explain the sigmoid shape of MEP input–output curve, 
why the curve steepens when a muscle is tonically acti-
vated and why the Var–amplitude relation has an inverted 
parabolic shape. To this end, a minimal mathematical 
model that is tractable and expressed in basic neurophysi-
ological variables was developed. Thus, α-motoneurons 
discharge characteristics are simplified and treated as 
binary threshold units as follows. When the synaptic cur-
rent induced by a near-synchronous corticospinal volley is 
sufficient to depolarize a motoneuron to threshold, a spike 
is discharged (Fig. 1A). The depolarization produced by 
a synaptic current will depend on the motoneuron’s input 
conductance, or equivalently its input resistance. Moto-
neurons of different input conductance will require syn-
aptic currents of different strength to reach spike threshold 
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and thus motoneurons within a pool will be recruited in 
an orderly manner as a function of the input current, in 
accordance with the ‘size principle’. However, whilst 
recruitment is orderly, the recruitment rate is not uniform 
because a motoneuron pool is typically composed of a 
greater proportion of units with low input conductance 
(e.g.). This is accounted for by a positively skewed prob-
ability density function of input conductance (Fig. 1B, C), 
details of the model follow.

We will deal with the response of model motoneu-
rons from a resting value of the membrane potential Vr 
to threshold VT  , where VT > Vr . When the input current 
is sufficient to depolarize the membrane potential Vm to a 
value Vm ≥ VT , the motoneuron discharges a single spike. 
The response S of a binary threshold unit with input con-
ductance gl to an input current I is given by

where � = VT − Vr sets the intrinsic excitability of the 
unit, a post synaptic factor and H  is the Heaviside step 
function such that

(2)S = H

(
I

gl
− �

)

Thus, when the membrane potential Vm = I∕gl equals or 
exceeds � , S = 1 indicating spike discharge (Fig. 1A). Sub-
threshold depolarization, or hyperpolarization, is effected by, 
respectively, changing Vr to a value closer to, or further away 
from VT . The model units are not recurrently connected, con-
sistent with the fact that motoneurons of distal muscles do not 
receive Renshaw cell inhibition (Windhorst 1996). As previ-
ously stated, one of the purposes of the model is to explain 
the nature of the Var–amplitude curve. Consequently some 
source of variability (i.e. ‘noise’) must be introduced in the 
model. Typically, when dealing with single neuron models, 
three sources of variability are commonly considered: vari-
able input, variable threshold, or variable membrane potential 
(Trappenberg 2002). Here, we use variable input currents hav-
ing a normal, or Gaussian, distribution N

(
I, �2

)
 with mean 

value I and variance �2 as shown in Fig. 1A. This choice is 
without loss of generality, as has been established in previous 

H(x) =

⎧⎪⎨⎪⎩

1 for x > 0

0 for x ≤ 0.

Fig. 1  Binary threshold unit and Rayleigh probability distribution 
functions. A Shows a binary threshold unit’s characteristics in block 
diagram form. A noisy input current I which is N

(
I, �2

)
 distributed 

acts through an input resistance g−1
l

 to depolarize the membrane 
potential Vm . If Vm ≥ VT the unit discharges a spike,S = 1 , otherwise 
S = 0 . The Rayleigh pdf fr

(
IT
)
 and cdf Fr

(
IT
)
 are shown in B and 

C, respectively, note that the Rayleigh pdf is positively skewed. The 
parameters of the Rayleigh functions used for the numerical simula-
tions were,Imean = 6.9 nA,Imin = 1.7 nA. C Shows how the cdf deter-
mines the recruitment level of the motoneuron pool. In the example, 
an input current of 6.58 nA (i.e. the median value of the distribution) 
would recruit 50% of the units within the motoneuron pool
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studies (Trappenberg 2002). As will be shown, the nature of 
the binary threshold unit’s transfer function, Eq. 2, is markedly 
modified when considering noisy input currents.

The preceding paragraph describes the response of indi-
vidual motoneurons to an impulse-like input current I , mim-
icking the near-synchronous corticospinal synaptic volley 
elicited by TMS. We want to determine the proportion R of 
motoneurons within the pool recruited as a function of I . We 
will refer to this proportion as the recruitment level and posit 
that the input–output curve is a measure of recruitment, as 
will be explained. The distribution of gl within a motoneu-
ron pool can be modelled by probability density functions 
(pdf) f

(
gl
)
 fitted to experimental data (Gustafsson and Pinter 

1984). The integral of the pdf is the cumulative probability 
distribution function (cdf) F

(
gl
)
 , from which the proportion of 

motoneurons recruited by an input current can be determined 
(see, Capaday and Stein 1987). Figure 1C provides a graphical 
illustration of the procedure. Note that since the recruitment 
level is defined by a cdf, its range is 0 ≤ R ≤ 1 . The probabil-
istic distribution of input conductance values is a key feature 
of the model because, as will be shown, the nature of the F

(
gl
)
 

curve contributes crucially to the shape of the input–output 
curve. Three different pdfs were used in the model simulations 
presented here, the uniform, exponential and Rayleigh distri-
bution functions. These pdfs were chosen to contrast functions 
that yield sigmoid input–output curves with those that do not. 
Additionally, the Rayleigh pdf (Fig. 1B, C) fits reasonably well 
the distribution of input conductance of cat triceps surae moto-
neurons (Capaday and Stein 1987). Note that the human FDI 
is roughly similar in its motor unit composition (Enoka 2008). 
However, the distribution of FDI motoneuron thresholds is 
not known, whereas a reasonable estimate of this distribution 
is available for cat triceps surae motoneurons. The generality 
of the results presented here is independent of the exact dis-
tribution, or values, of motoneuron input conductance within 
a motoneuron pool.

The distribution of input conductance can be related 
to the corresponding distribution of threshold currents by 
IT =

(
VT − Vr

)
gl _ i.e. a minimum current IT is required to 

discharge a unit with input conductance gl . This directly links 
the input current to the proportion of units that it would recruit. 
In other words, the pdfs can be expressed in terms of the dis-
tribution of IT rather than gl values. The advantages of using 
distributions of IT rather than gl will be explained further on. 
The Rayleigh pdf is given by

where Imin , is the minimum current required to discharge 
the units with the lowest threshold and b = 4

(
Imean − Imin

)2
∕� . 

(3)fr
�
IT
�
=

⎧⎪⎨⎪⎩

2

b

�
IT − Imin

�
e

−(IT−Imin)
2

b for IT ≥ Imin

0 for IT < Imin

The variable Imean is the mean value of current thresholds 
across the distribution. The uniform fu

(
IT
)
 and exponential 

fe
(
IT
)
 pdfs are, respectively, given by

Note that Imax is the minimum current required to discharge 
the unit having the highest threshold and is only applicable 
to the uniform distribution fu

(
IT
)
 , which is defined on the 

interval Imin ≤ IT ≤ Imax . The parameter b of the exponential 
distribution is its mean value. For any pdf, the proportion R of 
units recruited by an input current I is given by

where fx
(
IT
)
 is the particular pdf of current thresholds. 

Referring to the example shown in Fig. 1C, an input current of 
I = 6.58 nA would recruit 50% of the motoneurons in the pool.

Simulations based on the above model consist of choosing 
a distribution function for IT , choosing a value for input cur-
rent I and via Eq. 2 determining whether a unit is activated, 
or not. The proportion of units activated by that input cor-
responds to the recruitment level 0 ≤ R ≤ 1 . The process is 
repeated over a range of I values, until all the units within the 
motoneuron pool are recruited, i.e. when R = 1 . A plot R vs.I 
gives the input–output, or recruitment, curve and is analogous 
to the experimental MEP input–output curve. If the input is 
noiseless, the process is purely deterministic and the recruit-
ment variance is therefore zero. However, by randomly vary-
ing the input current N

(
I, �2

)
 and repeating the simulation 

several times, the mean recruitment level and the recruitment 
variance as a function of the mean value of the input current 
can be numerically estimated. When motoneurons are toni-
cally active, their membrane potential is on average closer to 
threshold than when they are quiescent (see, Capaday and 
Stein 1987). To simulate this condition,Vr is set closer to VT.

Results

The results section is divided in two main parts. The experi-
mentally determined Var–amplitude and CV–amplitude 
relations of MEPs are first described. Subtleties of the 

fu
�
IT
�
=

⎧
⎪⎨⎪⎩

1

(Imax−Imin)
for IT ≥ Imin

0 for IT < Imin and

fe
�
IT
�
=

⎧
⎪⎨⎪⎩

1

b
e

−(IT−Imin)
b for IT ≥ Imin

0 for IT < Imin.

R
(
IT
)
=

I

∫
Imin

fx
(
IT
)
dIT
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CV–amplitude relation are explained and examples of the 
amplitude distribution histograms of MEPs obtained at dif-
ferent stimulus intensities are described. In the second part, 
the mathematical model results are presented. The section 
begins with a description of the transfer function of binary 
threshold units responding to Gaussian inputs and their dis-
charge–variance characteristics. The response properties of 
motoneuron pool models composed of binary threshold units 
are then presented. Lastly, the discharge characteristics of 
binary threshold units and motoneuron pool response prop-
erties are related analytically.

Variance and CV characteristics of FDI MEPs

The input–output, Var–amplitude and CV–amplitude curves 
of two subjects are shown in Fig. 2. The input–output curves 
have the characteristic sigmoid shape that is well fitted 
by the Boltzmann function. The main new finding is that 
the Var–amplitude relation was found to have an inverted 
parabolic shape. The variance always peaked at an MEP 
amplitude near 50% of MEPmax , which will be referred to 
as MEP1∕2 . The Boltzmann function fit to the input–out-
put data always accounted for at least 90% of the data vari-
ance (i.e.R2 ≥ 0.9 ), whereas the inverted parabola fit to the 
Var–amplitude data accounted for at least 86% of the data 
variance (i.e.R2 ≥ 0.86 ), in all cases. The signal-to-noise 
ratio ( snr = 1∕cv ) is a useful measure to characterize MEP 
variability because the magnitudes of the variance or stand-
ard deviations are not important per se, but only in compari-
son to the mean. The snr calculated at MEP1∕2 , where the 
variance is largest, averaged 2.96 across subjects ( � = 0.81

,range = [1.26, 5]).
The CV–amplitude relation was found to have an approxi-

mately rectangular hyperbolic shape (i.e.CV ∝ 1∕MEP ) in 
most subjects (13/17). However, in a few subjects, the rela-
tion appeared to have inverse linear relation. Close inspec-
tion of the CV–amplitude relations in Fig. 2 shows that the 
curves appear near linear beyond MEPs of about 1.4 × MEP 
threshold. This strongly suggests that the inverse linear rela-
tion observed in some subjects is due to incomplete sam-
pling of the input–output curve, or a discontinuity of MEP 
amplitude, near the foot of the curve in each case. Evidence 
of this can be seen in the input–output curves shown in 
Fig. 3. In the example shown in Fig. 3A, there is a jump in 
MEP amplitude near the foot of the input–output curve and 
in Fig. 3B, the curve is not sampled at the foot of the curve.

MEP amplitude distribution histograms

Figure 4 shows examples of MEP amplitude distribution 
histograms at two stimulus intensities. The distribution 
of MEP amplitudes appears random and is not obviously 
similar to standard pdfs , such as the Gaussian, uniform, 

or exponential. However, note that at low-stimulus inten-
sities, the distribution is relatively narrow and skewed to 
the left, that is, toward low amplitude MEPs. At intermedi-
ate-stimulus intensities, the mean value of the distribution 
increases and the histogram broadens. Put another way, the 
variance was small at low-stimulus intensities and larger at 
intermediate-stimulus intensities for all subjects, as expected 
from the Var–amplitude relations in Fig. 2. These results 
are in keeping with those reported by Goetz et al. (2014), 
despite the far lower number of MEPs used to construct 
their amplitude histograms. Importantly, MEP amplitude 
variability was not related to fluctuations in the background 
EMG. For example, for the data presented in Fig. 4B, the 
fluctuations of background EMG account for only 3.2% of 
the MEP variance (i.e. r2 = 0.032, p = 0.04 ). In no case did 
fluctuations of the background EMG account substantially 
for MEP variance. This strongly suggests that the MEP 
fluctuations were not due to fluctuations of the background 
EMG, but to factors up-steam of the motoneuron pool. Of 
note, there was no correlation between the mean value of the 
background EMG measured during 50 ms before stimulus 
onset with that measured during 20 ms before MEP onset 
( r2 = 0.017, p = 0.14 ). More importantly, the mean EMG 
measures over the 50 ms interval before stimulus onset were 
not correlated with FDI MEP amplitude in all five subjects 
( r2 = 0.003, p = 0.53).

The experimental observations reported in the preced-
ing paragraphs are explained by the first-order mathematical 
model described in the methods section, as follows.

Input–output characteristics of binary threshold 
units

The response characteristics of a binary threshold unit are 
shown in Fig. 5. Clearly, when the input current is constant, 
the transfer function is step-shaped (Fig. 5A) as described 
by Eq. 2. The unit does not discharge unless the input I ≥ IT 
and there is no discharge variability, it will always fire when 
this condition is met. By contrast, when the input current is 
noisy with Gaussian statistics N

(
I, �2

)
 , the transfer function 

is sigmoid-shaped (Fig. 5A), meaning the unit now responds 
only on a proportion of trials. The discharge variance plotted 
against the discharge probability follows a parabolic pro-
file (Fig. 5B), reaching a peak of 0.25 when the discharge 
probability p = 0.5 , regardless of the variance of the input. 
The sigmoid shape of the transfer function and the parabolic 
shape of the discharge variability are explained as follows.

The discharge probability curve in Fig.  5A gives 
the proportion of trials for which the noisy input cur-
rent I ≥ IT  . For example, at a mean value of I = IT  , the 
response probability is p = 0.5 , because Gaussian noise 
has on average 50% of values above and below the mean. 
For inputs whose mean value is below threshold, there is a 
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proportion of trials for which I ≥ IT . Noise will thus make 
the unit fire for mean values below IT . The less than unity 
probability of discharge (i.e.p < 1 ) for inputs whose mean 
is above threshold is explained in a similar manner, there is 
a proportion of trials for which I < IT . As �2 increases, the 
foot of the transfer moves to the left along the abscissa and 

the steepness of the curve decreases (Fig. 5C). Increasing 
�
2 broadens the width of the distribution and lengthens 

the tails. It can thus be inferred that there will be a greater 
proportion of small mean input values that exceed IT and 
a larger proportion of high mean input values that do not. 
Consequently, the transfer function will rise more slowly 

Fig. 2  Examples of input–output, Var–amplitude and CV–amplitude 
curves. Panels A, B are data from two different subjects. Note the 
sigmoid shape of the input–output curves, the parabolic shape of the 
Var–amplitude curves and the hyperbolic shape of the CV–amplitude 

curves. In all cases shown, the goodness of fit value was R2 ≥ 0.95 . 
Note that some of the points in the Variance vs. MEP plot in (A) 
fall on top of each other; hence, the graph may appear to have fewer 
points than its counterparts above and below
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and its foot will shift to the left. The smaller the variance 
of the input, the closer the transfer function is to the step-
change transfer function for noiseless inputs.

From the above considerations, it follows that the transfer 
function of the binary threshold unit driven by Gaussian 
noise is

where erfc is the complementary error function and � the 
standard deviation of the noisy input current I . The equa-
tion gives the probability of spike discharge. The notation 
p(S = 1) refers to the probability that the spiking variable 
in Eq. 2 has a value of S = 1 . For example, when I = IT , 
p(S = 1) = 0.5 . The slope of the transfer function at the 
half-maximal input value IT is 1∕�

√
2� , decreasing with 

increasing noise level, as explained above. A plot of Eq. 4 
for a unit with an IT value of 10 nA and �2 = 3 is shown in 
Fig. 5A, the equation fits very closely the numerical simu-
lations. For a given value of � , subthreshold depolarization 
leads to a leftward shift of the input–output curve along the 
abscissa, which is readily verifiable by substituting IT with 
gl� in Eq. 4.

The parabolic shape of the discharge variance curve 
(Fig. 5B) is explained as follows. Activation of a unit by a 
noisy current N

(
I, �2

)
 repeated several times in succession 

is equivalent to series of Bernoulli trials, with probability p 
of firing and probability q = (1 − p) of not firing in response 
to a noisy input current N

(
I, �2

)
 . The variance of Bernoulli 

(4)p(S = 1) =
1

2
erfc

�
IT − I

�

√
2

�
,

trials depends only on the probabilities of success p and 
failure q and is given by var(p) = p(1 − p) . The graph of the 
equation is clearly an inverted parabola that fits very closely 
the results of the simulation runs as shown in Fig. 5B. The 
neurophysiological interpretation of the variance equation 
is akin to that for coin tossing experiments. The variance 
is maximal when the probability of success, or failure, is 
p = q = 0.5 . When the probability of success is p = 1 , the 
discharge variance is zero, since the unit always fires. When 
p = 0 , the unit never fires; hence, the discharge variance is 
also zero. Related to the variance, the CV of Bernoulli trials 
is given by CV =

√
(1 − p)∕p , this fits quite well the numeri-

cal simulations results shown in Fig. 5D.

Input–output characteristics of motoneuron pool 
models

In this section, we deal with the recruitment of binary 
threshold units within a pool. The distribution of the input 
conductance gl of the units within the pool is described 
by one of the three pdfs listed above. Figure 6A shows the 
recruitment level as a function of a noise-free input current 
for each pdf. There are two noteworthy points to consider: 
first, the recruitment in each case follows, by definition, the 
shape of the respective cdf, second, the recruitment curve 
is a sigmoid only for the Rayleigh pdf. The exponential and 
uniform pdfs do not produce a sigmoid-shaped recruitment 
curve, contrary to what is observed experimentally for MEPs 
and MSRs. Activation of the units with noisy input currents 

Fig. 3  Examples of linear-
like CV–amplitude relations 
obtained in two subjects In 
A, there is a jump in MEP 
amplitude near the foot the 
of the input–output curve at a 
stimulus intensity of ~ 50% and 
in Fig. 3B, the foot of the curve 
is incompletely sampled
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does not change the basic shape of the recruitment curve 
(Fig. 6B–D). However, in all cases, the recruitment curves 
are modified by noisy inputs in three principal ways. As can 
be observed in the figures, the foot of the response is shifted 
to the left along the abscissa (i.e. decrease of threshold), 
the recruitment rate (i.e. slope of the curves) decreases and 
maximum recruitment is never quite reached. The decrease 
of the recruitment rate is less pronounced for the uniform 
distribution (Fig. 6D).

For the remainder of this section, we will deal with 
recruitment in a motoneuron pool having a Rayleigh dis-
tribution of gl driven by noisy input currents N

(
I, �2

)
 . The 

recruitment level R and variance–recruitment VarR − R 
curves are shown in Fig. 7A, B. The R curve is sigmoid-
shaped and the VarR − R curve is an inverted parabola, 
consistent with the experimental observations presented. It 
is important not to confuse the VarR − R curve—a popula-
tion variable—with the discharge variance curve of sin-
gle units. The maximum value of VarR occurs when the 
recruitment level is very nearly 50% (i.e. at R1∕2 ), again 
consistent with the experimental results. Note however, 
that the VarR − R curve is slightly asymmetric, rising more 
steeply for inputs less than I = 6.58nA and more slowly 
for input I > 6.58nA . This is because the Rayleigh pdf is 

Fig. 4  MEP amplitude histograms of two different subjects for low 
and intermediate intensity stimuli. Note that at low-stimulus intensity 
(A and C), the histograms are positively skewed and have relatively 

low variance. For stronger stimuli (B and D), the histograms broaden, 
hence the variance increases. In no case does the histogram resemble 
any common pdf, such as a Gaussian, exponential or uniform
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positively skewed (Fig. 1B), with I = 6.58nA being the 
median value of the distribution. Thus, half the units have 
an IT value between 1.7 nA and 6.58 nA, a range of 4.88 
nA, whereas the other half have an IT value between 6.58 
nA and ~ 20 nA, a range of 13.42 nA. Sub-threshold depo-
larization (i.e. reducing the voltage threshold � ) results in 
a steeper recruitment curve (Fig. 7A). This is akin to the 
steepening of the MEP input–output curve when a subject 
exerts a tonic background contraction compared to rest 
(Devanne et al. 1997). Additionally, the VarR − R curves 
are scaled up by a multiplicative factor (Fig. 7B). In other 
words, the variance increases independently of the recruit-
ment level over nearly all the recruitment range. This is 
due to the compression and up-scaling of the distribu-
tion of IT(Fig. 7D). The CV − R curve decreases along 
an approximately rectangular hyperbolic profile (Fig. 7C), 
similarly to the experimental CV–amplitude curves. Inter-
estingly, increasing the noise level, or decreasing � results 

in a nearly linear CV − R curve, reminiscent of the experi-
mental results shown in Fig. 3.

Relation between input–output and recruitment 
curves

The size of motor unit action potentials (MUAP) increases 
with recruitment order. However, the relation between input 
conductance gl and MUAP size is not known. Fuglevand 
et al. (1993) suggested that MUAP size grows exponentially 
with recruitment order, over a 100-fold range. The nearly 
synchronous activation of motor units produced by a singe 
TMS stimulus results in a compound action potential (CAP), 
termed MEP. The CAP is the result of algebraic summation 
of individual MUAPs. How would scaling the recruitment 
curve R(I) in terms of CAP size affect its shape? To answer 
this question, the R(I) curve and its scaled CAP version are 
shown in Fig. 8A. The CAP is composed of MUAPs whose 

Fig. 5  Response characteristics of binary threshold units. (A) The 
response of a binary threshold unit with an IT value of 10 nA to 
noise-free input currents, or to noisy inputs having a normal distribu-
tion N

(
I, �2

)
 . Note that the transfer function for the noise-free inputs 

is the Heaviside step function, shown in red. The solid black curve 
(Theory) going through the points of the numerical simulation runs 
(n = 256) is the discharge probability predicted by Eq. 4. B When the 

unit responds to noisy inputs, the discharge variance vs. the response 
probability has an inverted parabolic profile, as predicted by the Ber-
noulli probability model. Note that when the noisy input current I is 
equal to IT , the discharge probability is p = 0.5 and the discharge var-
iance is maximal. C Increasing the noise level decreases the slope of 
the transfer function and lowers the threshold. D The CV decreases as √
(1 − p)∕p , as predicted by the Bernoulli probability model
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size grows exponentially with recruitment order, over a 100-
fold range. As can be seen, both curves are a sigmoid func-
tion of the mean input current and the CAP is proportional 
to R , albeit nonlinearly (Fig. 8B). One can also suggest, for 
example, that MUAP size grows linearly with recruitment 
order. Surprisingly, even in this case, the CAP curve remains 
a sigmoid and the two curves are not linearly related. The 
sigmoid nature of the recruitment curve leaves its imprint. 
Only if the MUAP size is distributed in the same way as 
gl , which determines the recruitment order, would the two 
curves be sigmoids and linearly proportional to each other.

Recruitment distribution histograms

The recruitment distribution for low, intermediate and high 
mean input currents is shown in Fig. 9. In all cases, the 
variance of the noisy input current is ~ 4.0  nA2, and their 

distribution is essentially Gaussian as can be seen in the 
lower panels of the figure. By contrast, observe that the 
recruitment distribution histograms are not Gaussian and 
that the shape of the distribution changes as a function of 
the mean input current. For low mean input currents, the 
recruitment distribution histogram is positively skewed 
towards low recruitment values and for strong mean input 
currents, it is negatively skewed towards high recruitment 
values (Fig. 9A and C). Note that in each case, the distri-
bution is narrow, reflecting low variance. For intermedi-
ate-strength inputs near the half-maximum input current 
I1∕2 , the distribution is much broader, reflecting high vari-
ance (Fig. 9B). These modelling results reflect the experi-
mental findings shown in Fig. 4, at low and high recruit-
ment levels, the variance is small, whereas near I1∕2 the 
variance is maximal.

Fig. 6  Contrasting the shapes of input–output curves. The form of 
the input–output curves for the Rayleigh, exponential and uniform 
pdfs are show in A. Note that only the Rayleigh pdf results in a sig-

moid-shaped input–output curve. In all cases, noisy input currents 
decreased the slope and reduced the threshold of the input–output 
curve
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Relating binary threshold unit responses 
to motoneuron pool response

Consider binning the Rayleigh pdf in Fig. 1B into N bins 
of width 2ΔIT . The area of each bin gives the proportion bi 
of units within the bin interval ITi − ΔIT ≤ ITi ≤ ITi + ΔIT , 
where 1 ≤ i ≤ N  refers to the bin number. If the bins are 
small enough, the discharge probability pi of the units within 
a bin is approximately equal to that of the unit with an ITi 
value in the middle of the bin. Since pi is a function of the 
input current given by Eq. 4, we can write pi(I) . Consider-
ing the ith bin, the average or expected proportion of units 
ri that would be recruited by an input current I would be 
ri(I) = bipi(I) . The population response R(I) is the sum over 
all bins, thus

In the continuous case, the summation operator would 
be replaced by an integral of the discharge probability Eq. 4 
multiplied by the Rayleigh pdf. Keep in mind that R(I) is the 
expected or mean recruitment level and therefore a proba-
bilistic variable.

For the recruitment variance, recall that a single unit’s 
discharge variance is p(I)(1 − p(I)) , therefore the recruit-
ment variance within a given bin is bipi(I)

(
1 − pi(I)

)
 . Since 

(5)R(I) =

N∑
i=1

bipi(I).

the units and bins are independent, the population variance 
is the sum of the individual variances. Following algebraic 
manipulations, it can be shown that the recruitment variance 
of the population VarR(I) is given by

Furthermore, the recruitment variance can be expressed in 
terms of the recruitment level by substituting pi(I) = ri(I)∕bi 
in the preceding equation, obtaining

The l imit ing values are VarR(R = 0) = 0 and 
VarR(R = 1) = 0 , as expected. Moreover, because the func-
tion is quadratic, there is only one maximum between the 
limiting values. This maximum occurs at R(I) =

∑
i

bi

2
= 0.5 , 

the median value of the distribution. Since the Rayleigh pdf 
is positively skewed (i.e. its median value is less than its 
mean value), the Varr − R curve can be slightly asymmetric 
depending on the noise level or firing threshold (Fig. 6B). 
The preceding three equations are a succinct summary of the 
model presented, relating single-unit transfer functions to 
motoneuron pool response characteristics. They accurately 
fit the numerical simulation results as shown in Fig. 7.

(6)VarR(I) = R(I) −

N∑
i=1

bipi(I)
2

(7)VarR(I) = R(I) −

N∑
i=1

ri(I)
2

bi
.

Fig. 7  Main results of the 
numerical simulation of the 
motoneuron pool model. The 
simulation used noisy input 
currents with � = 2nA , repeated 
512 times. A The recruitment 
curve has a sigmoid shape 
which steepens if the thresh-
old � of the binary-units is 
reduced ( � = 10 vs � = 5 ). The 
recruitment–variance curve is 
parabolic and the curve is scaled 
up by a multiplicative factor 
when the threshold is reduced 
B and the CV  vs. recruitment 
curve resembles a rectangular 
hyperbola (C). A reduction of 
� compresses and scales up the 
distribution of IT (D). Solu-
tions of the model summary 
Eqs. 5 and 7 are plotted with 
the numerical simulation results 
as black dashed marks. The 
reader should note the similari-
ties between the model results 
and the experimental results 
presented in Figs. 2 and 3
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Discussion

The main new experimental finding reported herein is that 
the relation between MEP variance and amplitude is an 
inverted parabola that peaks at ~  MEP1/2, or equivalently at 
 S50. It was also shown that CV–amplitude relation resembles 
a rectangular hyperbola and explained why in some cases 
an inverse linear relation is obtained. It is due to incom-
plete sampling of the MEP input–output curve near the 
foot of the relation, or more rarely because of a response 
discontinuity near threshold. Note that the CV–amplitude 
relation was described as approximately hyperbolic because 
of the square root dependence of the single-unit CV(i.e. 
CV =

√
(1 − p∕p) ). The CV will thus decrease more slowly 

as a function of MEP amplitude in comparison to a hyper-
bolic relation. Data were also presented on the amplitude 
distribution histograms of MEPs for low- and intermediate-
strength stimuli. At low-stimulus intensities, the histograms 
are narrow and positively skewed with small mean value and 
variance. They broaden at intermediate-stimulus intensities 
with a larger mean and variance. Their form thus changes 
with stimulus intensity. The histograms do not resemble any 
obvious theoretical probability distribution functions, such 
as the Gaussian, Rayleigh, or uniform distribution. The first-
order probabilistic model developed in the methods section 
explains well the experimental results, including the shape 
of the input–output curve, as follows.

The sigmoid shape of the MEP input–output curves 
arises from the shape of the cdf describing the distribution 
of input conductance gl , or equivalently threshold currents 
IT  . As the input current increases, recruitment proceeds 
along the curve described by the cdf (Fig. 1C). Noisy input 
currents decrease the steepness of the curve and lower the 
threshold for the following reasons. Because the input is 
noisy, there is some chance that low values of the input 
current exceed the IT of low threshold units, recruitment 

Fig. 8  Relation between input–output and recruitment curves. The 
double y-axis graph in A shows the recruitment curve and its scaled 
CAP version as a function of the mean input current. The CAP curve 
is computationally equivalent to an experimental MEP input–output 
curve, but its scaling is arbitrary. Note that the two curves whilst pro-
portional to each other, are not linearly related (B)

Fig. 9  The recruitment distribution histograms (upper panels) are not 
Gaussian. Note how the shape of the distribution changes as a func-
tion of the mean input current. By contrast, note the Gaussian nature 
of the input current amplitude histograms in the lower panels. The 

upper panels display stimulus strength in terms of the ‘motor thresh-
old’ (MT) for comparison to experimental data, whereas the lower 
panels display the actual value of the input current and its variance



2992 Experimental Brain Research (2021) 239:2979–2995

1 3

is thus increased at the low end. At the high end of the cdf 
(i.e. IT > I1∕2 ), the input is below the threshold of these 
units half the time, recruitment is thus decreased. Tak-
ing these two points together leads to a slower recruit-
ment rate. By contrast, decreasing the unit thresholds 
(i.e. increased background synaptic drive) increases the 
steepness of the curve, whether the inputs are noisy or 
not. This gain change is simply explained by the fact that 
motoneurons are recruited at a faster rate when their effec-
tive threshold is lowered. It can also be understood by 
considering that a decrease of threshold compresses and 
scales up the pdf curve (Fig. 7D), consequently full-scale 
recruitment occurs over a narrower range of input cur-
rents. Importantly and contrary to what has been reported 
for previous models (Capaday 1997; Rall 1955b), the 
input–output curves do not shift in parallel along the input 
axis with changes in motoneuron excitability. This is only 
true for the transfer function of binary threshold units, the 
gain change is thus a population effect. Not all cdfs have 
a sigmoid shape and not all that do, like the Gaussian, 
fit the positively skewed distribution of motoneuron pool 
threshold currents. A positively skewed distribution with 
a sigmoid cdf, like the Rayleigh distribution, is required. 
The exponential pdf has often been used to describe the 
distribution of motoneuron threshold current values (e.g. 
see, Fuglevand et al. 1993; Keenan et al. 2006). However, 
this pdf does not have sigmoid-shaped cdf and thus cannot 
be the basis of a sigmoid input–output curve. Additionally, 
the exponential pdf is not physiologically realistic since it 
has a discontinuity at the threshold current Imin.

The inverted parabolic shape of the VarR − R relation 
and by analogy that of the experimental Var–amplitude 
relation are explained as follows. Near R1∕2 , or equivalently 
I1∕2 , the median value, low and high IT units contribute lit-
tle or nothing to the recruitment variance. Low threshold 
units at input current values near I1∕2 are saturated, so their 
var ≈ 0 . High IT units are for the most not discharged, so 
their var ≈ 0 , or very low. Whilst near I1∕2 you have the 
highest density of units (Fig. 1B) and since their IT is near 
I1∕2 , their discharge var is high (Fig. 4B). Recall that VarR 
is the sum of the individual variance bipi

(
1 − pi

)
 . Clearly, it 

will follow a parabolic curve, peaking at I1∕2 when p = 0.5 
and the density bi is highest. By contrast, the VarR − R rela-
tion for a uniform distribution of IT is constant over most of 
the recruitment range ~ 0.2 ≤ R ≤ 0.8 , because the density of 
all bins is equal. As noted in the results section, the degree of 
asymmetry of VarR − R curve is dependent on the noise level 
of the input currents and the threshold, being negligible for 
values of 𝜎 > 2 , or 𝜃 < 7 . Interestingly, the Var–amplitude 
of MSRs recorded from the S1 ventral root, which contains 
a large proportion of the soleus motoneuron axons, is asym-
metric (Rudomin 1980; Rudomin and Dutton 1969). This 
is expected given low-noise synaptic inputs and a strongly 

positively skewed distribution of feline soleus motoneuron 
input conductance values.

Relatedly, the Var–amplitude characteristics of MEPs 
in different muscles may be expected to show asymmetries 
consistent with their MU compositions, considering the 
details just discussed. It would thus be interesting to meas-
ure Var–amplitude characteristics of different muscles, such 
as biceps, whose recruitment range is broader than that 
of the FDI—i.e. ~ 90% of MVC vs. ~ 60% MVC (e.g. see 
Dideriksen et al. 2012). It may turn out that the Var–ampli-
tude asymmetry reflects differences in recruitment range 
between different motoneuron pools. The model predicts 
that strongly positively skewed distributions of input con-
ductance will result in a Var–amplitude relation with a peak 
that is shifted to the left (i.e. to lower recruitment levels), 
whereas a strongly negatively skewed distribution will pro-
duce a Var–amplitude relation that is shifted to the right. It 
may thus be possible to infer the nature of the input conduct-
ance distribution of different motoneuron pools.

The model predicts that MEP variance should increase 
with the level of α-motoneuron drive (voluntary EMG 
activity), independently of MEP amplitude (Fig. 7B). This 
can be understood by the compression and multiplicative 
scaling of the pdf produced by depolarization, as shown in 
Fig. 7D. Recall that the pdf gives the density of units per 
unit IT . Thus, compression and scaling of the pdf imply that 
within any bin bi of width ΔIT , the proportion of units will 
be greater and consequently the variance bipi

(
1 − pi

)
 will be 

greater for any value of pi . Darling et al. (2006) reported that 
an increase of α-motoneuron drive, relative to rest, results 
in an increase of MEP variance when plotted vs. stimulus 
intensity. This would also be true if the variances were plot-
ted vs. MEP amplitude and is therefore as predicted by the 
model. However, it was also reported that the CV plotted vs. 
stimulus intensity decreased, which seems surprising and 
contrary to the model results which show that CV should 
slightly increase (Fig. 7C). This apparent discrepancy is 
explained as follows. Increasing α-motoneuron drive steep-
ens the input–output curve, which means that MEPs increase 
at a faster rate as a function of stimulus intensity, but the 
variance increases more slowly. Consequently CV appears 
lower when plotted against stimulus, but higher when plotted 
vs. MEP amplitude. In short, the model’s prediction on MEP 
variance is fully consistent with and clarifies the available 
experimental evidence.

Regarding the MEP amplitude histograms, one may sur-
mise that for any stimulus intensity, the distribution should 
reflect the noise characteristics of the evoked corticospinal 
synaptic currents, say for example Gaussian. However, what-
ever the statistical characteristics of the synaptic currents 
may be, one also needs to consider that these act on a non-
homogenous population of motoneurons having a positively 
skewed distribution of input conductance. Consequently, the 
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distribution of MEP amplitudes will depend on the pdf of 
the synaptic current amplitudes, as well as the distribution of 
input conductance. The resulting amplitude histograms will 
resemble neither distribution and their shape will change 
with stimulus intensity. The model thus explains the nature 
of the observed experimental MEP amplitude histograms.

The Boltzmann equation, which has been widely used to 
fit MEP input–output curves, is not derived from the model 
presented. viz. binary-variable-threshold units driven by 
noisy synaptic currents, with unit threshold currents dis-
tributed according to a positively skewed probability density 
function. The Boltzmann model derives the actual distri-
bution of, for example, the number of molecules at differ-
ent energy levels. It predicts an exponential decrease of the 
number of molecules with increasing energy level. Similarly, 
Hodgkin and Huxley characterized the voltage dependence 
of ionic membrane conductance based on a Boltzmann 
distribution of the proportion of charged molecules on the 
inside of the membrane relative to the outside (Hodgkin 
and Huxley 1952). The present model does not predict an 
exponential decrease of the number of recruited units with 
increasing IT . What then is the connection between the pre-
sent model and the Boltzmann equation? One may surmise 
that the distribution of input conductance within motoneuron 
pools, such as that of the FDI, is a Boltzmann-like function. 
However, whilst the Boltzmann cdf  has a sigmoid shape, 
the pdf  is a symmetrical bell-shaped curve, which would 
imply that the distribution of motoneuron input conductance 
is symmetric. This is counter to the available evidence, as 
previously discussed. Nonetheless, the defining equation of 
the Boltzmann cdf  has sufficient parameters ( S50 and slope 
parameter) to obtain a good fit with experimental data. In the 
absence of direct measurements of the distribution of input 
conductance, or relative excitabilities of motoneurons within 
a pool, the Boltzmann function remains a useful empirical fit 
to MEP input–output curves and several statistical methods 
have been proposed to determine task-dependent changes of 
these curves (e.g. Devanne et al. 2002; Kouchtir-Devanne 
et al. 2012).

As the experimental results show and the model explains, 
MEP amplitudes are not normally distributed and their vari-
ance is not homogeneous. Additionally, as shown in Fig. 7D, 
MEPs obtained in different conditions are drawn from dis-
tributions having different mean and variance. These results 
have implications for statistical analysis, a conclusion also 
reached by Goetz et al. (2014). Unpaired t tests, ANOVA and 
curve-fitting algorithms, for example, assume that the varia-
bles are at least roughly normally distributed with equal vari-
ance (e.g. see Devore 1987). While Monte Carlo simulations 
have shown that these tests are relatively robust to departures 
from these assumptions (e.g. see Ferguson 1976), it remains 
to be determined whether this is also true for MEPs given 
the statistical characteristics reported here. For example, it 

would be of interest to determine whether weighted non-
linear curve-fitting algorithms yield more robust results 
than standard non-weighted algorithms. Importantly, the 
type of weighting (e.g.1∕x, 1∕x2 etc.) needed to improve the 
quality of fit depends on knowledge of the functional rela-
tion between MEP amplitude and variance (e.g. see Devore 
1987).

At constant stimulus intensity, there are two sources 
of MEP variability, variability of corticospinal synaptic 
transmission and variability due to motoneuron membrane 
potential fluctuations, both are inherent to the present 
model. Many studies have been done to find experimental 
protocols that minimize MEP variability and reliability of 
input–output curves (Julkunen et al. 2012; Pellicciari et al. 
2016; Suckley et al. 2020; Keirs et al. 1993). It is suggested 
that by far the most influential and controllable variable is 
the background level of EMG activity, a measure of moto-
neuron pool recruitment level and firing rate (α-motoneuron 
drive). Indeed, the recent study of Suckley et al. (2020) with 
background contraction of the FDI maintained at 10% of 
MVC, no statistically significant differences in MEP vari-
ance between three blocked stimulation protocols were 
found. MEP amplitude is highly sensitive to changes in the 
background EMG level, at a fixed stimulus strength, MEPs 
increase linearly with the mean level of background EMG 
(e.g. Darling et al. 2006; Lavoie et al. 1995). Importantly, it 
is the EMG level just prior to MEP onset that is important 
and not, as is usually done, that measured 50–100 ms before 
the stimulus. In other words, it is the near instantaneous level 
of background EMG and the co-temporal noisy synaptic 
input, which determine MEP amplitude. Such a near instan-
taneous measure of EMG can be made in the brief 20–30 ms 
interval between stimulus delivery and MEP onset, which 
is possible in recording conditions with little or no stimulus 
artefact. The procedure should prove to be important in con-
ditions of varying EMG activity. Variability of corticospinal 
synaptic transmission is more difficult to control, because 
non-invasive measures of the state of motor cortical activity 
are not possible. Even if this was possible, the nature of syn-
aptic transmission is inherently noisy (e.g. see Zucker et al. 
2004). One can, nonetheless, insure constant stimulation coil 
placement and require subjects to concentrate on the task 
as mitigating measures. A comprehensive discussion of the 
factors that influence MEP variability can be found in Dar-
ling et al. (2006). Independent fluctuations in motoneuron 
pool and motor cortical excitability have been suggested to 
underlie MEP variability (Kiers et al. 1993). The lack of sig-
nificant correlation between MEP amplitude and the mean 
level of background EMG suggests that the main source of 
variability, at least during tonic background contractions, is 
due to fluctuations of synaptic transmission at corticospinal 
terminals. This may, at least in part, be due to fluctuations of 
cortico-motoneuron recruitment from stimulus to stimulus. 
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In conclusion, one can nearly clamp the level of motoneuron 
pool activity to a desired level by asking subjects to main-
tain a prescribed level of muscle contraction, in which case 
MEP variability will mainly reflect inevitable fluctuations of 
corticospinal synaptic transmission and cortico-motoneuron 
recruitment.

Epilogue

MEP amplitude is a sigmoid function of stimulus inten-
sity and MEP variance is an inverted parabolic function of 
MEP amplitude. A mathematical model that explains these 
experimental results in neurophysiological terms was pre-
sented. Elaboration of the model was guided by the idea that 
simplification is often crucial for insight, as remarked by 
Wilson (1999) amongst others. Thus, a minimal mechanistic 
description of how an α-motoneuron of given excitability 
and discharge threshold responds to synchronous but noisy 
synaptic inputs, such as TMS-evoked corticospinal volleys, 
was developed. This led to Eq. 4 relating discharge probabil-
ity to mean input current that is central to the overall model. 
More complex motoneuron models that include a variety of 
intrinsic conductances and cable properties would not yield 
results which differ in any principal way from those pre-
sented. The distribution of motoneuron excitability within 
the pool was distributed according to a pdf that fits experi-
mental findings. The results are largely independent of the 
exact nature of the pdf, as long as it is positively skewed and 
has a sigmoid cdf. The sigmoid nature of MEP amplitude 
as a function of stimulus intensity, the input–output curve, 
is due to the orderly recruitment of units along the cdf. The 
increasing size of MUAPs with recruitment order only 
changes the coefficients of the sigmoid, such as its scale. The 
gain change which occurs in going from rest to tonic motor 
activity is due to compression and up-scaling of the pdf. The 
inverted parabolic relation between MEP variance and MEP 
amplitude is due to the discharge variance characteristics of 
single units following the statistics of Bernoulli trials and the 
non-uniform nature of the Rayleigh pdf. The variance peaks 
near the median value of the distribution, where the density 
of motoneurons is greatest.
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