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The firing rate gain of neurons, defined as the slope of the relation between input to a
neuron and its firing rate, has received considerable attention in the past few years. This
has been largely motivated by the many experimental demonstrations of behavior related
gain changes in a variety of neural circuits of the CNS. A surprising result was that a
prime candidate, shunting inhibition, apparently does not change the firing rate gain of
neurons. However, in this paper, we show a physiologically plausible mechanism by which
shunting inhibition in the dendritic tree does, in a simple and direct manner, modulate the
firing gain of neurons. The effect is due to a strong attenuation of the dendritic current
arriving at the soma by shunting dendritic inhibition. Increasing the dendritic inhibitory
conductance enhances the attenuation of current flowing from the dendritic to the somatic
compartment and thus reduces firing gain. This mechanism relies on known physiological
and anatomical properties of CNS neurons and does not require special features such as
tunable neural noise inputs. Gain control by the proposed mechanism may prove to be a
ubiquitous feature of neural circuit operations and it is readily verifiable experimentally.

Keywords: Multiplication; gain modulation; membrane conductance; firing gain;
motoneurons.

1. Introduction

A large number of experimental studies in a variety of neural systems have demon-
strated that the firing rate gain of neurons can change during behavior. For example,
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the gain through the first sensory relay nucleus of weakly electric fish is modi-
fied without a significant change of the baseline spontaneous activity of the out-
put E-cells of this nucleus [5, 6]. Similarly, the H-reflex is reduced in the stance
phase of human walking, in comparison to voluntary activation at matched levels
of motor activity (reviewed in Ref. 12). In area 7a of monkey parietal cortex, a
neuron’s response to visual inputs depends in a multiplicative way on the position
of the eye in the orbit [3]. Such experimental observations have spurred on studies
to elucidate the mechanisms by which the firing rate gain of neurons may be con-
trolled [12, 13, 15, 16, 24, 32, 38]. The focus of this work has been at the level of
the single neuron, notwithstanding that the experimental data was obtained from
neural systems with complex network topologies that can inherently produce gain
changes.

It is now well established that mixtures of postsynaptic excitatory and inhibitory
inputs into the soma have little, if any, effect on firing rate gain [12, 13, 24, 30].
Based on a single numerical study of a complicated model neuron, Holt and Koch
concluded that dendritic shunting inhibition also does not change the firing rate
gain. In response to these results, several groups have investigated more elaborate
single cell mechanisms for gain control [15, 32, 36].

These mechanisms have in common that they rely on stochastic membrane poten-
tial fluctuations, referred to as noise, to effect a change in gain. There is disagreement
on the nature of gain control by membrane noise. Chance et al. [15] proposed that
excitatory and inhibitory inputs acting in the background control gain, whilst added
excitatory inputs produce firing. This gain control mechanism assumes excitatory
and inhibitory inputs be balanced so as not to affect the resting membrane potential.
It is not clear how this balance, or other noise parameters, may be controlled by
neural circuits. Mitchell and Silver [32] proposed that gain control may be achieved
in a simpler way with tonic background inhibition and noisy excitatory inputs. Yet
another mechanism was proposed by Prescott and De Koninck [36], who suggested
that noise itself has a relatively small influence on firing gain, but coupled to a
process termed dendritic saturation, gain modulation is considerably enhanced for
inputs on dendrites.

One remarkable feature of the model studied in [36] is its similarity to the orig-
inal work by Holt and Koch [24], which indicated that in a very similar model
inhibitory inputs, arriving at the dendrite does not lead to a change in gain. There-
fore, we have a situation in which two numerical studies suggest opposite results for
dendritic shunting inhibition. What is needed to disambiguate the situation is an
understanding of the possible mechanism that may lead to a change in gain through
dendritic shunting inhibition. Here, we present a simple two compartment (2-C)
integrate and fire (IF) model in which this issue can be studied analytically, and the
mechanism can be understood. We also perform simulations of a conductance based
2-C model to show that the mechanism does not rely on special features of the IF
model.
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2. Models

The focus of the mathematical analysis and numerical simulations presented herein is
on 2-C models. We begin with an integrate-and-fire 2-C model following the parallel
resistor-capacitor neuron model first proposed by Lapicque [25]. The integrate-and-
fire (IF) model allows the derivation of analytical expressions that relate the cur-
rent threshold required for firing to the conductances activated at the somatic and
dendritic compartments. From this, the relation between firing rate and activated
conductances follows. The expression readily explains how firing gain may be mod-
ulated. A conductance based α-motoneuron model is then used to demonstrate that
the analytical results derived for the IF model are applicable for a generic repeti-
tively firing neuron model. The numerical outputs of the α-motoneuron model are
directly comparable to the experimental data.

2.1. Analytically tractable model

We construct a two compartment integrate and fire (IF) neuron, for which the firing
rate can be determined analytically. To describe such a model, we first reconsider
the standard IF neuron [25], and then use this to formulate a 2-C model with a
soma that acts as an IF neuron attached, by a coupling conductance, to a passive
dendritic compartment.

2.1.1. Single compartment IF neuron

In the IF neuron the voltage, V , relative to the resting potential, satisfies

C
dV

dt
= −gl(V − Vl) + I0(t), (2.1)

where C is the membrane capacitance, gl the leak conductance, Vl is the leak reversal
potential which we will assume to be 0, and I0 the current injected into the cell.
When the voltage reaches its threshold value, VT, the neuron spikes and voltage is
reset to the reset potential, Vr. Alternatively, we may write

C
dV

dt
= −glV + I0(t) + Ispike(t), (2.2)

where Ispike is the current that induces the spike and resets the voltage.
In a single compartment, the action potential itself is usually neglected, and

only the reset after the spike is taken into account. However, in a conductance-
based model neuron that has a somatic and a dendritic compartment, the spike in
the soma will have the effect of depolarizing the voltage in the dendrite. Thus, the
spike cannot be neglected. Spikes are characterized by large voltage excursions of
short duration. Their effect on the dendrite is proportional to the product of the
height and width of the spike. We can mimic this in the IF neuron by taking the
limit where the spike duration is infinitely short, while keeping the area under the
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spike constant. Thus, if the spikes occur at times t = tk, the voltage of the neuron
is given by the voltage of Eq. (2.1) or (2.2), to which a term

∑
Sδ(t − tk) is added.

S is the area under the spike, while δ(t) is the Dirac delta function. S has the
dimension voltage × time. The spike can be incorporated in the current Ispike by
writing Ispike as

Ispike(t) =
∑

k

SCδ′(t − tk) + [Sgl − C(VT − Vr)]δ(t − tk). (2.3)

Here δ′(t) is the derivative of the delta function, δ′(t) = dδ(t)/dt. Using this, one can
integrate Eq. (2.2) to obtain the evolution of the voltage including the spike. Note
that the spike times tk have to be consistent with the voltage trace; the voltage at
time tk has to satisfy V (tk) = VT.

2.1.2. A two-compartment IF neuron

We can generalize this to an IF neuron with more than one compartment. We
consider a two-compartment model that consists of a soma that acts as an IF neuron,
which is coupled to passive dendritic compartment. The current from the soma to the
dendrite is equal to gC(VS −VD). gC is the conductance between the compartments,
VS is the somatic voltage and VD the dendritic voltage. The voltage of the dendrite
satisfies

CD
VD

dt
= −gDVD + ID(t) + gC(VS − VD), (2.4)

where CD is the capacitance of the dendritic compartment, gD is its mem-
brane conductance, and ID(t) is the current injected into the dendritic
compartment.

The voltage of the soma obeys

CS
VS

dt
= −gSVS + IS(t) + Ispike(t) + gC(VD − VS), (2.5)

where CS , gS and IS(t) are the soma’s capacitance, membrane conductance and
input current respectively. Using Ispike(t) as defined by Eq. (2.3) leads to an ambi-
guity, since the spike current depends on the membrane conductance, and it is not
immediately clear which conductance to take. One could take the conductance gS ,
or gS + gC , or something in between. If VD would follow VS extremely closely, so
that the term gC(VD − VS) were negligible, the right choice would likely be gS . On
the other hand, if VD was independent of VS , one should take gS + gC . The reality
is somewhere between these extremes, and we will use an effective conductance,
geff, that takes this into account. To determine geff, we calculate the steady state
voltage VSS of the soma when a constant sub-threshold current IS is applied to the
soma and the effective conductance as the ratio between the latter and the former,
geff = IS/VSS.
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With a sub-threshold current, the neuron does not spike, so we can determine
the steady state voltage using Eqs. (2.4) and (2.5) with Ispike = 0. Thus, we obtain
for the effective conductance

geff = gS + gC
gD

gD + gC
. (2.6)

To recapitulate, in the two-compartment IF neuron, the dendritic voltage obeys
Eq. (2.4) and the somatic voltage Eq. (2.5), in which Ispike is given by

Ispike(t) =
∑

k

SCSδ′(t − tk) + [Sgeff − CS(VT − Vr)]δ(t − tk), (2.7)

with geff given by Eq. (2.6). In this description, the effect of the spike can also be
described in the following way: If the cell fires an action potential at time tk, the
somatic voltage is immediately reset from VT to Vr − g2

CS/[CS(gD + gC)], while the
dendritic voltage is increased by an amount gCS/CD.

VS(t−) = VT ⇒



VS(t+) → Vr − g2
C

gD+gC

S
CS

VD(t+) → VD(t−) + gC
S

CD

. (2.8)

It should be noted that in this description, the voltage of the soma is not reset to Vr,
but to a lower value instead. This is to compensate for the fact that dendritic voltage
is increased during the spike. As the two compartments are coupled, this increase
in the dendritic voltage leads to an extra current into the somatic compartment, for
which the lower reset compensates.

To better understand this mechanism, it is useful to consider the case where gC

is very large. In this limit, one would assume that the neuron could be treated as an
effective single compartment cell. Yet, the reset voltage, Vreset = Vr − g2

CS/[CS(gD +
gC)] becomes very negative, while on the other hand, the dendritic voltage just after
the spike VD(t+) = VD(t−) + gCS/CD will reach a very large positive value. However,
one can show that on a timescale τ = gC(CD + CS)/CDCS , which is much shorter
than the soma’s and dendrite’s membrane time constants, both voltages evolve to
the same value, VS ≈ VD ≈ (CDVD(t−) + CSVr)/(CD + CS). Therefore, except
for immediately after the spike, the two voltages are indeed almost identical and
the neuron can be treated as a single compartment cell. The somatic and dendritic
voltage are very different during and just after the spike, due to our description of
the spike as an event with zero duration. If we have chosen a description of the
spike with a finite duration, the two voltages would also be the same during the
spike.

2.1.3. Synaptic currents

So far, we have described the model’s response to the current injected in the somatic
or dendritic compartment. Inputs mediated through synapses have two effects. They
inject currents into the cell and increase the effective membrane conductance. For
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a dendritic compartment with a leak conductance glD, that receives synaptic input
with conductances geD and giD for the excitatory and inhibitory synapses respec-
tively, VD satisfies

CD
dVD

dt
= −glDVD − geD(VD − Ve) − giD(VD − Vi) + gC(VS − VD), (2.9)

where Ve and Vi are the reversal potentials, relative to the threshold, of the exci-
tatory and inhibitory synaptic currents. For a somatic compartment with a leak
conductance glS and synaptic conductances geS and giS , VS obeys

CS
dVS

dt
= −glSVS − geS(VS − Ve) − giS(VS − Vi) + gC(VD − VS) + Ispike. (2.10)

This reduces to the model described above, if we set gS = glS + geS + giS ,
gD = glD + geD + giD and write for the currents IS = geSVe + gISVI and
ID = geDVe + giDVi. Clearly, we can also account for cases in which synaptic inputs
and injected currents are combined by setting IS = geSVe + gISVI + I0S , where I0S

is the applied current into the soma, and treat an applied input into the dendrite in
a similar manner.

2.2. Conductance based α-motoneuron model

The basic physiological properties of spinal α-motoneurons and the parameter space
needed to produce a model of this neuron are well characterized (e.g., Refs. 19, 22, 34
and 35). Thus, a simple α-motoneuron model was used as an example of a generic
repetitively firing neuron [12, 13]. The purpose was not to produce a state-of-the-art
model of α-motoneurons, but simply to use a physiologically plausible yet compu-
tationally tractable neuron model sufficient to explore the issues at hand (e.g., see
Refs. 12 and 28). The results presented herein are derived from a 2-C model based on
time and voltage dependent ionic conductances [12]. The model includes a dendritic
compartment electrically coupled to an active somatic compartment.

2.2.1. Computational procedures

The motoneuron model used in the present simulations is described in detail in
Capaday [12]. The values of the somatic conductances and time constants were
taken from the extensive simulations of cat α-motoneurons done by Powers [34];
they are presented along with other simulation parameters in Table 1. The dendritic
compartment was electrically coupled to the soma such that the ratio of dendritic
to somatic conductance was ten. The effects of changing the coupling conductance
on firing rate gain are also considered. The model includes resting (leak) somatic
(glS) and dendritic conductances (glD) and excitatory (geS , geD) and inhibitory
(giS , giD) conductances. The somatic and dendritic excitatory and inhibitory con-
ductances were independently controlled. The resting membrane potential (Vr) was
set to zero. When the spike threshold is reached — fixed at 10 mV more depolarized
than Vr — the membrane potential is set to 90 mV for 1 ms, thus simulating the
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Table 1. Parameter values used for the numerical simulation of the
α-motoneuron model.

Parameters Value(s)

Membrane Capacitances, CS , CD 0.55, 5.46 nF
Resting Conductances, glS , glD 0.1, 0.45 µS
Coupling Conductance, gC 0.45 µS
Threshold and Resting Potential, VT, Vr 10, 0mV
Excitatory Reversal Potential, Ve 50 mV
Inhibitory and Potassium Reversal Potential, Vi, VK −10, −15mV
Fast Potassium Conductance, GKf 0.7 µS
After Hyperpolarization Conductance, Gahp 2.8 µS
Decay Time Constant, τKf , of gKf 3ms
Decay Time Constant, τahp, of gahp 22ms

occurrence of a spike [34]. The time of occurrence of spikes is explicitly determined
in the simulations, from which the firing rate is calculated. Following the occurrence
of a spike, a fast Potassium conductance (gKf ) at the soma quickly repolarizes
the motoneuron [4], whereas the slower Calcium-dependent after-hyperpolarization
(AHP) conductance (gahp) regulates the firing rate [19, 29, 30]. The following pair
of coupled differential equations gives the rate of change of membrane potential in
each compartment

CD
dVD

dt
= −glDVD − geD(VD − Ve) − giD(VD − Vi) + gC(VS − VD)

CS
dVS

dt
= −glSVS − geS(VS − Ve) − giS(VS − Vi) + gKf(VK − VS)

+ gahp(VK − VS) + gC(VD − VS),

(2.11)

where VK is the potassium reversal potential. Immediately after the first spike, the
conductance for the fast potassium (gKf ) and afterhyperpolarization (gahp) rapidly
increase to the values GKf and Gahp respectively. Between spikes, these conduc-
tances decay back to zero with time constants τKf and τahp. These conductances
are saturating and their increase after subsequent spikes is decreased by an amount
proportional to gKf and gahp respectively. For more details see Refs. 12 and 30.

This coupled pair of equations is non-linear and has no known analytical solu-
tion. Therefore, the time dependence of the membrane potential was obtained by
numerical integration of the equation with respect to time. These simulations were
performed in Mathcad, using a fourth-order Runge–Kuta integration scheme. The
non-linearity is due to the product of the time-dependent AHP conductance with
the membrane potential and more generally, any of the conductances that may be
of non-linear functions of time or membrane potential. Further details on this model
and analytical expressions to calculate the steady-state dendritic and somatic poten-
tials and the attenuation of currents flowing from one compartment to the other are
presented in Ref. 12.
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3. Results

The results are divided in three sections. In the first two sections, the relations
between firing rate and constant injected currents, or conductance changes, are
derived for the IF model. From these equations, the mechanism by which gain mod-
ulation may be effected is readily apparent. Numerical simulation results based on
these equations are then presented graphically to demonstrate the nature of the gain
modulation. Details on the derivation of the equations are given in the appendix.
In the third section, numerical simulation results, motivated by the derived analyti-
cal expressions, are presented for the α-motoneuron model. The purpose is to show
that the analytical results derived from the IF model are applicable to more realistic
conductance based neural models.

3.1. Response of the IF neuron to constant inputs

If the inputs IS into the soma and ID into the dendrite are constant, the neuron will
fire periodically after a transient. To determine the firing rate, we make the Ansatz so
that the voltages vary periodically with period T and determine T self-consistently.

Assuming that the neuron spikes at times tk = kT , then just after the spike at
time t = 0, the somatic voltage is given by VS(0+) = Vr− g2

CS
CS(gD+gC) ; while just before

the next spike at time t = T , the voltage is at the threshold, VS(T−) = VT. The
voltage of the dendrite is augmented by an amount gCS/CD, and since the voltage
of the neuron is periodic, with a period T , we have VD(0+) = VD(T−) + gCS/CD.
In Appendix A, we show that this allows us to calculate the relation between the
inputs, IS and ID, and the period. The input-output relation is given by

τs(λ+ − λ−)
V ′

S + g̃DV ′
D

1 − g̃S g̃D

= g̃S g̃DS

(
λ+e−λ+T

1 − e−λ+T
− λ−e−λ−T

1 − e−λ−T

)
+ VT

(
1 − τSλ−
1 − e−λ+T

− 1 − τSλ+

1 − e−λ−T

)

+ Vr

(
(1 − τSλ+)−λ−T

1 − e−λ−T
− (1 − τSλ−)e−λ+T

1 − e−λ+T

)
, (3.1)

where we have used V ′
A = IA/(gC + gA), for A = S or D, g̃S = gC/(gD + gC) and

g̃D = gC/(gS + gD), while the parameters λ+ and λ− are given by

λ± =
1

2τSτD

(
τS + τD ±

√
(τS − τD)2 + 4g̃S g̃DτSτS

)
. (3.2)

Here, τA = CA/(gA + gC) for A = S or D.
The plot of the firing rate against either a somatic or a dendritic input current

looks rather similar to that of a one-compartment IF neuron. The period diverges
logarithmically near the threshold, while for the larger inputs, the f-I relation is
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linear. In Appendix A, we show that at the thresholds IS and ID, they satisfy[
IS +

gC

gC + gD
ID

]
thresh

=
(

gS + gC
gD

gD + gC

)
VT. (3.3)

For large inputs, the firing rate, R = 1/T , is to leading order given by

R =
1

CS(VT − Vr)

(
IS +

gC

gC + gD
ID

)
. (3.4)

What does this mean for shunting inhibition? Assuming that the neuron receives
no excitatory synaptic input, geS = geD = 0, and the inhibitory synaptic input
is purely shunting at Vi = 0, we have gS = glS + giS and gD = glD + giD,
while the currents, IS = I0S and ID = I0D, are applied to the respective
compartments.

If we apply input only to the soma, ID = 0, the minimal input, IS,thresh, to get
the cell to fire is

IS,thresh =
(

glS + giS + gC
glD + giD

glD + giD + gC

)
VT. (3.5)

For high rates, we have that, to leading order, the firing rate is given by

R =
IS

CS(VT − Vr)
. (3.6)

Equation (3.5) shows the threshold current increases as the shunting inhibition
in the soma or dendrite is increased. Yet, unlike the shunting inhibition in the
soma, the increase in the threshold current is due to dendritic shunting saturates.
Equation (3.6) shows that for high rates where the relationship between the input
current and firing rate is linear, the slope of the f-I curve depends neither on giS nor
on giD.

In the case where we apply current only to the dendrite, IS = 0, the dendritic
threshold current, ID,thresh, above which the neuron starts to fire is given by

ID,thresh =
[
(glS + giS)

glD + giD + gC

glD + giD
+ glD + giD

]
VT, (3.7)

while in the linear part of the f-I curve the slope is given by

R =
gC

glD + giD + gC

ID

CS(VT − Vr)
. (3.8)

Thus, the threshold for the dendritic current increases linearly with both giS and
giD, while the slope of the f-I curve depends on giD but not on giS .

This is illustrated in Fig. 1. The four panels in this figure show the firing rate,
R, plotted against either the current, IS , injected in the soma (Figs. 1A and 1B), or
the injected dendritic current, ID (Figs. 1C and 1D), for different levels of somatic
(Figs. 1A and 1C) or dendritic (Figs. 1B and 1D) shunting inhibition. Table 2 shows
the parameters of the IF model used to generate this figure. Increasing shunting
inhibition increases the current threshold in all cases, although in the case of somatic
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(A) (B)

(C) (D)

Fig. 1. The effects of somatic and dendritic inhibition on the firing rate gain of the IF model
neuron. The term “control” in this and other figures indicates that no inhibitory input is active.
In all cases shown in this figure firing was produced by injected currents as specified by the label
under each graph’s abscissa. Only in the case (D) when firing produced by co-active excitation and
inhibition in the dendritic compartment was the firing gain changed.

Table 2. Parameters of the two compart-
ment IF neuron used for Figs. 1 and 2.

Parameter Value Parameter Value

CS 2 nF CD 20 nF
glS 0.1 µS glD 0.5 µS
gC 0.5 µS S 25µVs
VT 10 mV Vr −10mV
Ve 50 mV

input current and dendritic shunting, the effect is small. In the linear range, shunting
inhibition at the soma does not change the slope of the f-I curve, but instead shifts
the curve along the abscissa (Fig. 1A). If the shunting, inhibition is at the dendrite
while the input is at the soma, there is hardly any effect on the linear range of the
f-I curve (Fig. 1B). Only in the case where there is dendritic current input and the
shunting inhibition is also on the dendrite does the slope of the f-I curve change
(Fig. 1D). Thus, shunting inhibition has a subtractive effect if the inhibition is at
the soma. If the shunting inhibition is at the dendrite and the current is applied to
the soma, the effect is negligible. Only if both target the dendrite, will the shunting
inhibition have a divisive effect.



June 13, 2006 9:26 WSPC/179-JIN 00115

Control of Firing Rate Gain 209

3.2. Response to constant synaptic inputs

When the neuron is driven by constant synaptic input, the relationship between
the excitatory synaptic conductances geS and geD, and the firing period T is still
given by Eq. (3.1), even though gS = glS + geS + giS , gD = glD + geD + giD,
V ′

S = geSVE/(gS + gC) and V ′
D = geDVE/(gD + gC). The other variables satisfy the

same relationship as in the case of the constant injected currents.
Using Eqs. (3.3) and (3.4), one sees that for excitatory synapses at the soma,

the conductance required to reach threshold, geS,thresh, is given by

geS,thresh =
(

glS + giS + gC
glD + giD

glD + giD + gC

)
VT

Ve − VT

, (3.9)

while for high rates, the gain function becomes linear and the rate satisfies to the
leading order

R =
Ve

CS(VT − Vr)
geS . (3.10)

For excitatory synapses projecting to the dendritic compartment, the situation
is slightly more complicated. There is an upper limit to the shunting inhibition in
the soma, giS , above which neuron does not fire at all, no matter how large the
dendritic excitatory synaptic conductance, geD. This can be understood by realizing
that dendritic synaptic excitation cannot increase the dendritic voltage VD above
the excitatory reversal potential Ve. This puts an upper limit to the amount of
current that can flow from the dendrite to the soma. In the sub-threshold regime,
the voltage at the soma, VS , is less than the voltage V which satisfies V (0) = VS(0)
and evolves according to

CS
dV

dt
= −(glS + giS)V + gC(Ve − V ), (3.11)

and has an equilibrium value, Veq = gCVe

glS+giS+gC
. Thus, if Veq < VT, or giS >

gC(Ve/VT − 1) − glS , the somatic voltage will never cross the threshold no mat-
ter how large geD is. If giS is less than this maximum value, Eq. (3.3) gives for the
dendritic threshold conductance geD,thresh

geD,thresh =
(glS + giS)(glD + giD) + gC(glS + giS + glD + giD + gC)

gC(Ve/VT − 1) − glS + giS
. (3.12)

If giS is not too large, the rate will be high for sufficiently large geD and we can use
Eq. (3.4) to determine the relationship between the firing rate R and the excitatory
dendritic conductance

R =
gC

glD + geD + giD + gC

Ve

CS(VT − Vr)
geD. (3.13)
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(A) (B)

Fig. 2. The effects of somatic or dendritic inhibitory inputs on the firing rate of the IF model
neuron. In these examples firing was produced by either somatic (A) or dendritic (B) excitatory
conductance changes. Note how dendritic inhibition (B) reduces the slope (gain) of the relation
between firing rate and dendritic excitatory conductance.

Note that firing rate saturates as geD is increased. The rate does not rise above
R = gCVe/(CS [VT − Vr]). The explanation for this is while the effective input into
the dendrite ID = geDVe increases with the excitatory conductance, so does the
effective leak gD = glD + geD + giD. This causes an increased attenuation, so that
no matter how strong is the dendritic excitation, the current from dendrite to the
soma is bounded.

If the neuron receives both excitatory synaptic input in the soma and in the
dendrite, the firing rate for large inputs is given by the sum of Eqs. (3.10) and
(3.13). In this case, the firing rate is given by

R =
(

geS +
geDgC

glD + geD + giD + gC

)
Ve

CS(VT − Vr)
. (3.14)

Figure 2 shows the firing rate of the two compartment IF neuron as a func-
tion of excitatory synaptic conductance. Figure 2A shows the f-g curve which plots
the rate, R against the somatic excitatory conductance, geS , for different levels of
somatic shunting inhibition. The results are similar to those for current injection.
The somatic inhibition has a subtractive effect. In Fig. 2B, the firing rate R is plot-
ted against the dendritic excitatory conductance, geD, for different levels of dendritic
inhibition. As expected, the firing rate saturates as geD is increased. For different
levels of dendritic inhibition, the rate asymptotes to the same value but reaches the
maximum slower as giD is increased. Thus, for the same firing rate, the f-g curve
is less steep if the dendritic shunt is increased. From Eq. (3.13), we see that for
sufficiently high rates, the slope is decreased by a constant fraction. This shows that
dendritic shunting inhibition has a divisive effect on dendritic excitatory input. This
is shown explicitly in Fig. 3A. In this figure, we plot the slope of the f-g curve (firing
gain) against the firing rate. For the same firing rates, the slope of the f-g curve is
reduced as giD is increased.
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(A) (B)

Fig. 3. The relation between firing rate gain and firing rate produced by dendritic excitatory
conductance is shown for the 2-C model IF neuron (A) and the α-motoneuron model (B). Gains
were calculated by the central difference formula. Note how the addition of dendritic inhibition
(giD) decreases firing rate gain and that the effect is most pronounced at low and intermediate
firing rates. Note that the gain curves for the 2-C IF model neuron converge at very low firing
rates because the model does not have a minimum firing rate. By contrast, the firing rate of the
α-motoneuron model begins circa 8 Imp/s, consequently the gain curves do not converge at low
firing rates.

3.3. Gain modulation of the conductance based

α-motoneuron model

The relation between firing rate and somatic excitatory conductance for the
α-motoneuron model is shown in Fig. 4A. As has been previously reported theoreti-
cally [12, 24] and experimentally [9, 41], increasing the inhibitory conductance at the
soma results in a translation of the f-g curve to the right along the abscissa, without
changing its shape. When the neuron is driven by dendritic excitatory inputs, the
firing rate increases nonlinearly and slowly converges to a plateau (Fig. 4B). This is
due to the strong and non-linear attenuation of current flowing from the dendritic

(A) (B)

Fig. 4. The effects of somatic (A) or dendritic (B) inhibitory conductance on the firing rate of the
α-motoneuron model. In (A) firing was produced by activating somatic excitatory conductances and
in (B) by activating dendritic excitatory conductances. Inhibition at the soma simply translates the
relation between firing rate and excitatory conductance to the right. By contrast, dendritic inhibition
decreases the firing rate gain when excitation is at the dendrite, as well as also translating the curves
to the right. This effect is across the full range of firing rates.
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to the somatic compartment, as previously reported [12]. Increasing the dendritic
inhibitory conductance not only shifts the curve to the right along the abscissa, but
also decreases its slope; the firing gain is thus directly modified (Fig. 4B). This is
shown explicitly in Fig. 3B, where firing gain is plotted vs. firing rate. Increasing the
dendritic inhibitory conductance from zero to 4µS decreases the gain eightfold at the
onset of repetitive firing. By contrast, increasing the dendritic inhibitory conduc-
tance translates the curve relating firing rate and somatic excitatory conductance
to the right by a small amount, without affecting its shape; while increasing somatic
inhibitory conductance translates the curve relating firing rate and dendritic con-
ductance, but not its shape. These effects are similar to those of the IF neuron
model.

Equation (3.13) shows that for the IF neuron, the firing rate scales linearly with
geD/(glD + geD + giD + gC) for sufficiently high rates. In Fig. 5A, the firing rate is
plotted against this normalized excitatory dendritic conductance for the IF neuron.
Figure 5B shows the same for the α-motoneuron model. For the IF neuron, the plots
for different levels of dendritic shunting inhibition perfectly coincide for high rates.
For the α-motoneuron, the overlap is not as good but the trend is similar, the curves
clearly converge at higher firing rates. The discrepancy is probably due to the limited
firing rate range of the α-motoneuron model and the interaction between current
flowing from dendrite to soma and the AHP current. It is also interesting to note
that the scaling procedure resulted in a quasi-linear relation between normalized
dendritic conductance (Fig. 5B) and the firing rate. This contrasts strongly with
the non-linear relation between dendritic conductance and the firing rate (Fig. 4B).
The observation emphasizes that it is the net current reaching the spike initiation
zone at the soma which determines the firing rate. In summary, as predicted by
Eq. (3.13), firing rate gain can be modulated by attenuating the current flowing
from the dendritic to the somatic compartment. This attenuation occurs naturally

(A) (B)

Fig. 5. The firing rate plotted against the normalized dendritic excitatory conductance for the
IF (A) and the α-motoneuron model (B). (A) shows that for the IF model when the dendritic
excitatory conductance (geD) is scaled by 1/(glD + geD + giD + gC) the graphs essentially coincide,
except at low rates. Graph (B) shows that the overlap is less good for the α-motoneuron model,
but that the trend is similar as for the IF model, the curves tend to converge at higher firing rates.
Further details and explanations are given in the text.
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(A) (B)

Fig. 6. Examples of how dendritic current produced by activating synaptic dendritic excitatory
conductance (A), or current injected in the dendrite (B), are attenuated at the soma. The somatic
and dendritic compartments were voltage clamped. Note that for synaptic currents the relation
between dendritic excitatory conductance and current reaching the soma is nonlinear, explaining the
nonlinear relation between dendritic excitatory conductance and firing rate. The current reaching
the soma is progressively more attenuated as dendritic conductance increases (A). By contrast,
the current reaching the soma is attenuated by a constant factor for current injected into the
dendrite (B).

and increases progressively as the dendritic excitatory conductance increases on its
own (Fig. 6A). Adding inhibition provides a control mechanism by which this current
can be further attenuated. As shown in Fig. 6A, increasing the dendritic inhibitory
conductance attenuates in a divisive manner, the current flowing from the dendritic
to the somatic compartment.

The non-linear relation between firing rate and dendritic excitatory conductance
is explained by the progressive attenuation of the current flowing from dendrite to
soma (Fig. 6A). By contrast, when current is injected in the dendrite, no change
in conductance occurs and the current reaching the soma is linearly related to the
injected dendritic current (Fig. 6B). In this case, the slope of the relation is deter-
mined by the attenuation factor gC/(glD + geD + giD + gC). Clearly, if the dendritic
inhibitory conductance is increased, current attenuation also increases (Fig. 6B). The
fact that current reaching the soma is linearly related to current injected in the den-
drite predicts that the relation between firing rate and current injected in the den-
drite will be a monotonically increasing function, as with current injected in the
soma. This is in fact the case as shown in Fig. 7A. Predictably, increasing the den-
dritic inhibitory conductance reduces the slope of this relation and shifts the curve
to the right (Fig. 7A). However, when firing is produced by current injected in the
soma, increasing the dendritic inhibitory conductance only translates the f-I curve
to the right by a small amount (Fig. 7B). The small translation effect is due to the
strong attenuation of current, whether excitatory or inhibitory, flowing from den-
drite to soma. The lack of effect on the slope of the relation is readily explained by
Eq. (3.13). The current produced by activation of the dendritic inhibitory conduc-
tance simply adds a constant term to the relation between firing rate and current
injected in the soma.
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(A) (B)

Fig. 7. Effects of dendritic inhibitory conductance on firing produced by current injected in the
dendrite (A) or soma (B). Note the strong effect on gain when firing is produced by dendritic
inputs, but not when produced by somatic inputs. Note also that the effects of dendritic inhibition
on firing produced by current injected in the soma are weak because of the strong attenuation of
current from dendrite to soma.

Fig. 8. As the coupling conductance (gC) between soma and dendrite increases the firing rate gain
also increases, because current flowing from dendrite to soma is less attenuated.

The distinction between coupling conductance and dendritic conductance is
somewhat artificial, owing to the discrete nature of compartment models of neurons
that are in fact continuous structures. Thus, as is clear from Eq. (3.13), changing the
coupling conductance will have a direct effect on firing rate gain (Fig. 8). Physiolog-
ically, this would be equivalent to increasing inhibition on the proximal dendrites,
with the excitatory inputs arriving at the more distal portions.

4. Discussion

The main new finding in this report is that dendritic inhibition leads to a direct
change of a neuron’s firing rate gain for excitatory inputs that arrive at the den-
drite, but not for inputs arriving at the soma. The mechanism can be understood
in a straightforward manner and is captured by Eqs. (3.8) and (3.13). The gain
change is due to attenuation of current flowing from dendrite to soma, by shunting
dendritic inhibition. The gain control mechanism we propose is understandable in
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Fig. 9. The π-network composed of three conductances (gS, gD, gC) nicely explains why control
of the dendritic conductance (shunting) affects the firing rate gain of neurons. The equation relat-
ing the proportion of the dendritic current (ID) flowing into the soma (IS) is shown below the
π-network. The salient feature of this equation is the attenuation factor, 1/(gD/gC + 1), which
explains why current flowing into the soma from the dendrite is progressively attenuated as
the dendritic conductance increases (i.e., in the limit, IS → 0 as gD → ∞). The gain of the
relation between firing rate and dendritic current will thus depend on the attenuation factor,
1/(gD/gC + 1).

an intuitive and formally correct manner by considering a simple three conductance
π-network neuron model (Fig. 9). The soma and dendrite are represented by single
conductances, gS and gD respectively, linked by a coupling conductance gC . In this
equivalent representation, the current reaching the soma (IS) is related to the cur-
rent coming from the dendrite (ID) by IS = ID/(gD/gS + 1). The salient feature of
this equation is the attenuation factor 1/(gD/gS + 1), which explains why current
flowing to the soma from the dendrite is progressively attenuated, as the dendritic
conductance increases (i.e., in the limit, IS → 0 as gD → ∞). The gain of the
relation between firing rate and dendritic current will thus depend on the attenu-
ation factor, 1/(gD/gS + 1). The two compartment models we used, allowed us to
obtain analytical expressions relating firing rate to inputs, either injected currents or
synaptically activated conductances, and thus determine the factors that can change
the firing rate gain. The predictions were verified using a simple conductance-based
α-motoneuron model. A noteworthy observation was that dendritic inhibition acts
to decrease gain over the full range of firing rates possible with dendritic excitation.
The dendritic compartment of the present α-motoneuron model was assumed to be
passive, but active conductances such as L-type Ca++ channels can be incorporated
in the model [7]. In the event, the dendritic inhibitory shunt is likely to have an
even more dramatic effect, since dendritic inhibition will suppress activation of the
active dendritic currents [31] and reduce gain in the secondary firing range. Some-
thing of this sort was in fact observed by Granit et al. [19], but they could not
appreciate at the time that the effect was likely due to a reduction of the L-type
Ca++ conductance.
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We emphasize that the mechanism we propose does not rely on assumed processes
such as noisy excitatory inputs interacting with tonic shunting inhibition [32], or on
noisy, balanced, excitatory and inhibitory background activity [15]; neither does it
depend on saturation of dendritic voltage interacting with threshold smoothing by
noise, as suggested by Prescott and De Koninck [36]. In fact, the conclusion in the
latter numerical simulation study that the reported gain changes are the result of
dendritic saturation, is incorrect. Indeed, we have shown that shunting inhibition
also reduces the gain of the neuron to current injected into the dendrite, and with
current injection the dendritic voltage does not saturate. Furthermore, our gain
control mechanism does not depend on a non-linear relation between dendritic exci-
tation and somatic depolarization interacting with noisy inputs, as suggested by
Prescott and De Koninck [36]. The non-linear relation between dendritic excitation
and somatic depolarization explains the non-linear relation between dendritic exci-
tation and firing rate (Fig. 5B), but it is not the basis of a gain control mechanism.
Gain control by dendritic shunting inhibition arises naturally from co-active den-
dritic excitatory and inhibitory inputs. The extent of the mechanism proposed by
Chance et al. [15], Mitchell and Silver [32] and by us, may be simultaneously oper-
ative during neural circuit functions, as well as be mutually reinforcing. It should
be noted, however, that the latter mechanisms are somato-centric. They depend
on excitation and inhibition at the soma, whereas most neuron inputs are on the
dendritic tree and the two types of inputs overlap. For example, 70% of excitatory
and 80% of inhibitory inputs are located more than 100 µm away from the soma
of motoneurons [8, 10]. Likewise, overlap of excitatory and inhibitory inputs on the
dendritic shafts of cortical and hippocampal pyramidal cells have been demonstrated
[20, 39]. The gain control mechanism we propose is thus naturally consonant with a
prominent feature of neural circuit organization, i.e., the extensive overlap of exci-
tatory and inhibitory synapses on the dendritic tree of neurons. Furthermore, it is
clear that with the mechanism proposed here, different levels of shunting inhibition
applied to different parts of a neuron’s dendritic tree, such as the apical versus basal
dendrites of pyramidal neurons, should result in differential gain modulation. The
gain may thus be independently controlled at different input ports. This makes for
a potentially input-specific control mechanism.

4.1. Experimental predictions

Our hypothesis is readily testable in a variety of well described neural circuits. For
example, inputs to mammalian α-motoneurons coming from Ia-inhibitory interneu-
rons (Ia-IN) are located closer to the soma, compared with those from Renshaw neu-
rons which are on the proximal dendrites [17]. Consequently, Ia-IN inhibition should
have a mainly subtractive effect on f-I curves, consistent with previously published
experimental data [19, 23]. By contrast, our hypothesis predicts that motoneuron
firing produced by Ia-afferents, 90% of which are on the dendrites, should have a
lower gain when co-activated with Renshaw cell inputs. This would correspond to
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the model results presented in Fig. 8 where current from dendrite to soma was
controlled by the coupling conductance. Experimentally, this may be done by, for
example, simultaneously stretching the antagonistic ankle muscles in the decere-
brate cat. Our results predict that: (1) the relation between muscle length (input)
and motoneuron firing rate will be non-linear, since more than 90% of Ia afferent
synapses are distributed across the dendritic tree, and (2) the gain of this relation
will not change when Ia-afferent excitation is simultaneous with inhibition coming
from the Ia-INs of the antagonistic muscle. However, when Renshaw inhibition is
changed in an open-loop manner [13], the firing rate gain should change.

4.2. Limitations

We re-emphasize that the main effect of dendritic inhibition on firing rate gain does
not depend on a non-linear relation between input and firing rate (e.g., compare
Figs. 4B versus 6B). However, different firing profiles, near rheobase, will be some-
what differently affected. For neurons that begin to discharge at a non-zero rate,
such as motoneurons, dendritic inhibition will have an obvious effect on gain across
the firing range, whereas for neurons that are capable of firing at an arbitrarily low
rate, such as pyramidal cells in sensory cortices, the effect of dendritic inhibition will
only reduce gain in the approximately linear portion of the f-I curve (i.e., at higher
frequencies). However, during dynamic operation of the nervous system, there are
presumably random fluctuations of synaptic activity (noise) which smears out the
threshold non-linearity [2, 21]. The recent work of Chance et al. [15] suggests that
this may extend the region across which dendritic shunting inhibition has a divisive
effect on firing rate gain.

4.3. Epilogue

To what extent modulation of firing rate gain is important in the moment-to-moment
operations of the nervous system in its various functions such as attention, sensory
processing and motor control remains to be elucidated. To our knowledge, there
is no direct evidence that firing rate gain is causal to a class of neural processing
operations, rather than simply being a consequence of these operations; i.e., gain
modulation does not imply purposeful gain control. Clearly, however, many examples
in which gain control may be important have been described. For example, in weak
electric fish, there is no mechanism for controlling the sensitivity of the electrorecep-
tor afferents or their synaptic effects. These afferents synapse directly on E-cells of
the first sensory relay nucleus. It has been shown that the gain through this nucleus
is modified without a significant change of the baseline spontaneous activity of the
output E-cells of this nucleus [5, 6], but the mechanism(s) has been elusive [16].
In the motor system, gain control of reflex pathways appear to be important for
proper motor performance [27, 37, 40]. More complex gain modulations have been
reported in neocortical neurons. For example, the firing rate of posterior parietal
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neurons is a function of retinal location. However, the spatial location of the eye
scales the relation in a multiplicative manner [3]. Thus, the gain of the response at
each retinal locus depends on eye position. The reader should note that the firing
rate is a function of retinal locus and eye position, but that these variables may not
be related in a simple manner to the currents that drive cell firing. The gain change
is thus relative to external variables, but not necessarily relative to the currents that
actually drive the firing. It is conceivable that the gain between firing rate and driv-
ing current is in fact the same at all eye positions, but that the currents may be a
function of eye position leading to an apparent gain change. This example serves to
caution against inferring gain changes between variables linked by a complex chain
of neural circuits. Because gains are multiplicative, gain may be changed anywhere
in the chain, but not necessarily at the recorded neuron. The recent work of Mur-
phy and Miller [33] emphasizes the difference between the firing rate versus stimulus
parameter relation, and that of firing rate versus the currents that drive the neuron.

In conclusion, here we have demonstrated a direct and physiologically plausible
mechanism by which direct control of firing rate gain may be effected in the CNS.
However, this is unlikely to be the sole mechanism. Firing rate gain can also be
controlled by actions at the presynaptic terminal [1, 13], by inhibitory feedback
which is a function of the neurons firing rate, or by neuromodulator substances that
affect intrinsic inward or outward currents [29].

Appendix A. Two-Compartment IF Model

A.1. Response to constant current inputs

Between spikes for 0 < t < T , the voltages VD and VS satisfy Eqs. (2.9) and (2.10)
with Ispike = 0. By dividing both sides of the Eq. (2.9) by gD + gC and both sides of
Eq. (2.10) by gS + gC , these equations can be written as

τD
dVD

dt
= V ′

D − VD + g̃SVS (A.1)

and

τS
dVS

dt
= V ′

S − VS + g̃DVD, (A.2)

where τA = CA/(gA + gC) and V ′
A = IA/(gA + gC), while g̃S = gC/(gD + gC) and

g̃D = gC/(gS + gC).
Solutions of these equations can be written as

VA(t) = VA0 + VA+e−λ+t + e−λ−tVA− for A = S,D, (A.3)

where λ± are the solutions of (τSλ − 1)(τDλ − 1) − g̃S g̃D = 0,

λ± =
1

2τSτD

(
τS + τD ±

√
(τS − τD)2 + 4τSτDg̃S g̃D

)
. (A.4)
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Inserting Eq. (A.3) into Eqs. (A.1) and (A.2), one obtains

VS0 =
V ′

S + g̃DV ′
D

1 − g̃S g̃D
, VD0 =

V ′
D + g̃SV ′

S

1 − g̃S g̃D
(A.5)

and

VD± =
1 − τSλ±

g̃D
VS±. (A.6)

The values of VS+ and VS− have to be determined by the relationships between the
voltages at times t = 0 and t = T .

Using VD(0) − VD(T ) = gCS/CD = g̃SS/τD, we obtain

(1 − τSλ+)VS+

(
1 − e−λ+t

)
+ (1 − τSλ−)VS−

(
1 − e−λ−t

)
=

g̃S g̃D

τD
S, (A.7)

while VS(0) − VS(T ) = Vr − VT − g̃S g̃DS/τS yield

VS+

(
1 − e−λ+t

)
+ VS−

(
1 − e−λ−t

)
= Vr − VT − g̃S g̃D

τS
S. (A.8)

Solving these two equations for VS±, we obtain

VS± =
(1 − τSλ∓)(VT − Vr) + λ±g̃S g̃DS

τS(λ ∓−λ±)(1 − e−λ±t)
. (A.9)

Finally, to get the relationship between IS , ID and T , we need to impose the
constraint that at time t = T , the somatic voltage is at the threshold, VS(T ) = VT.
This yields the input-output relationship

τs(λ+ − λ−)
V ′

S + g̃DV ′
D

1 − g̃S g̃D

= g̃S g̃DS

(
λ+e−λ+T

1 − e−λ+T
− λ−e−λ−T

1 − e−λ−T

)
+ VT

(
1 − τSλ−
1 − e−λ+T

− 1 − τSλ+

1 − e−λ−T

)

+ Vr

(
(1 − τSλ+)−λ−T

1 − e−λ−T
− (1 − τSλ−)e−λ+T

1 − e−λ+T

)
. (A.10)

A.2. The current threshold

If the input is below threshold, the neuron does not emit spikes. The threshold input
can be found by taking the limit T → ∞ in Eq. (A.10), or alternatively, by setting
VS0 = VT. This yields for the threshold

V ′
S + g̃DV ′

D

1 − g̃S g̃D
= VT, (A.11)
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which can be written as[
IS +

gC

gD + gC
ID

]
=

(
gS + gC

gD

gD + gC

)
VT (A.12)

using the definitions of V ′
S , V ′

D, g̃S and g̃D.

A.3. High rate approximation

If the input is large, and the firing rate is high, we can approximate Eq. (A.10). For
high rate T � 1, e−λ±T ≈ 1 − λ±T . Inserting this in Eq. (A.10), we obtain

τS
V ′

S + g̃DV ′
D

1 − g̃S g̃D
=

VT − Vr

λ+λ−T
[(λ+ + λ−)τS − 1]. (A.13)

Using

λ+λ− =
1 − g̃S g̃D

τSτD
and λ+ + λ− =

1
τS

+
1
τD

, (A.14)

this can be simplified to

V ′
S + g̃DV ′

D =
(VT − Vr)τS

T
. (A.15)

Therefore, the firing rate R = 1/T is, to leading order, given by

R =
1

CM (VT − Vr)

(
IS +

gC

gD + gC
ID

)
. (A.16)
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