
Abstract It has been suggested that balancing excitatory
and inhibitory conductance levels can control the firing
rate gain of single neurons, defined as the slope of the
relation between discharge frequency and excitatory con-
ductance. According to this view the increase in firing
rate produced by an input pathway can be controlled in-
dependently of the ongoing firing rate by adjusting the
mixture of excitatory and inhibitory conductances pro-
duced by other pathways converging onto the neuron.
These conclusions were derived from a simple RC-neu-
ron model with no active conductances, or firing thresh-
old mechanism. The analysis of that model considered
only the subthreshold behaviour and did not consider the
relation between total trans-membrane conductance and
firing rate. Similar conclusions were also derived from a
simple parallel conductance based model. In this paper I
consider, as an example of a repetitively firing neuron, a
generic model of cat lumbar α-motoneurons with excita-
tory and inhibitory inputs and a second independent ex-
citatory pathway. The excitatory and inhibitory inputs
can be thought of as central descending controls while
the second excitatory pathway may represent, for exam-
ple, the monosynaptic Ia-afferent pathway. I have re-ex-
amined the possibility that the firing rate gain of the ‘af-
ferent’ pathway can be controlled independently of the
ongoing firing rate by balancing the excitatory and in-
hibitory conductances activated by the descending in-
puts. The steady state firing rate of the model motoneu-
ron increased nearly linearly with the excitatory current,
as it does in real motoneurons (primary firing range).
The model motoneuron also showed a secondary firing

range, whose slope was steeper than in primary range.
The firing rate gain was measured by increasing the con-
ductance of the ‘afferent’ pathway. The firing rate gain
(in the primary and secondary firing range) of the ‘affer-
ent’ pathway was found to be the same regardless of the
particular mixture of excitatory and inhibitory conduc-
tances acting to produce the ongoing firing rate. This re-
sult was obtained for a single-compartment model, as
well as for a two-compartment model consisting of an
active somatic compartment and a dendritic compart-
ment containing an L-type calcium conductance. Put
simply, the firing rate gain of an input to a neuron cannot
be controlled by balancing excitatory and inhibitory con-
ductances produced by other independent input path-
ways, or by the spatial distribution of excitation and in-
hibition across the neuron. Three potential ways of con-
trolling the firing rate gain are presented in the ‘Discus-
sion’. Firing rate gain can be controlled by actions at the
presynaptic terminal, by inhibitory feedback, which is a
function of the neuron’s firing rate, or by neuromodula-
tor substances that affect intrinsic inward or outward cur-
rents.
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Introduction

In a paper published more than a decade ago, we sug-
gested that the central gain of the monosynaptic compo-
nent of the stretch reflex could only be controlled by pre-
synaptic inhibition of the Ia-afferent terminals projecting
to the α-motoneurons (Capaday and Stein 1987a). The
basis of that conclusion was the observation that the re-
flex output of the motoneuron pool in response to a Ia-
afferent input was tied to the background recruitment
level (ongoing level of activity) and was independent of
the particular mixture of excitatory and inhibitory con-
ductances acting to produce a given recruitment level. In
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other words, the size of the reflex response depended on-
ly on the strength of synaptic transmission at the Ia-af-
ferent to motoneuron synapses and on the recruitment
level of the motoneuron pool. Thus, the gain of this path-
way could not be controlled at the postsynaptic level by
mixtures of excitatory and inhibitory conductances pro-
duced, for example, by descending inputs to the motor
pool. We thus suggested that the task dependent changes
of the stretch reflex output observed experimentally in
tasks such as standing, walking and running (Capaday
and Stein 1986, 1987b; Crenna and Frigo 1987) were
due to changes of presynaptic inhibition of the Ia affer-
ents (Capaday and Stein 1987a). The predictions of our
model were subsequently tested in experiments on decer-
ebrate cats (Capaday and Stein 1989). It was shown that
the soleus monosynaptic reflex output was tied to the re-
cruitment level of the motoneuron pool regardless of the
combination of excitatory (crossed-extension reflex
pathway) and inhibitory inputs (e.g. Renshaw inhibition)
acting on the pool (see also Henneman and Mendell
1981). This was ipso facto an explicit statement that the
gain of single neurons cannot be controlled by postsyn-
aptic conductance changes, consistent with the intracel-
lular current injection studies of Granit et al. (1966).
This idea also implies, explicitly, that shunting inhibition
is not divisive as had been generally assumed (see Holt
and Koch 1997). Unfortunately, the idea that firing rate
gain cannot be controlled by postsynaptic conductance
changes has not received wide acceptance and continues
to be the basis of many neurophysiological models rang-
ing from electrolocation in weakly electric fish (Nelson
1994) to models of simple cells in area V1 of the cere-
bral cortex (Carandini and Heeger 1994).

For example, in weakly electric fish there is no mech-
anism for controlling the sensitivity of the electrorecep-
tor afferents. These afferents synapse directly on E cells
of the first sensory relay nucleus. It has been shown that
the gain through the first sensory relay nucleus is modi-
fied without a significant change of the baseline sponta-
neous activity of the output E cells of this nucleus 
(Bastian 1986a, 1986b). Descending excitatory and in-
hibitory pathways are known to exist on the apical den-
dritic and somatic regions, respectively (Bastian and
Courtright 1991). This is akin to the descending excitato-
ry and inhibitory inputs on spinal motoneurons. The
strong conceptual analogy between the gain control of an
afferent pathway through the electrosensory relay nucle-
us of weakly electric fish and the gain control of the Ia-
afferent pathway through a mammalian motoneuron nu-
cleus is thus striking. Nelson (1994) suggested that the
firing rate gain of E cells was controlled by appropriately
balanced levels of excitatory and inhibitory conductanc-
es changes produced by descending inputs, such that the
background firing rate would not be modified. This is a
contradiction of our modelling results on the reflex out-
put of a motoneuron pool (Capaday and Stein 1987a).
Although the emphasis of our modelling studies was on
understanding population responses, the model was
based on a realistic description of single motoneurons

and the statistical distribution of intrinsic conductance
parameters across the motor pool. Nelson’s model was a
simple RC-type neuron with no active conductances, or a
spike generating mechanism, and the analysis was re-
stricted to subthreshold membrane potential levels. More
importantly, the relation between total trans-membrane
conductance and discharge rate was not analyzed.

In this paper the balancing of postsynaptic conduc-
tances as a mechanism of gain control is tested more ful-
ly by considering: (1) the steady state and transient firing
behaviour of neurons, (2) the effects on non-linear fre-
quency vs current curves and (3) the spatial distribution
of excitatory and inhibitory inputs on a neuron.

Materials and methods

Description of the model

The basic physiological properties of spinal α-motoneurons and
the parameter space needed to produce a model of this neuron are
well characterized (e.g. Heckman 1994; Granit 1972; Powers
1993). Thus, a realistic α-motoneuron model (Capaday and Stein
1987a; Powers 1993) was used as an example of a generic repeti-
tively firing neuron. The purpose of this study was not to produce
a state of the art model of α-motoneurons, but simply to use a
physiologically plausible yet computationally tractable neuron
model sufficient to explore the issues at hand (e.g. see Matthews
1999). Figure 1A schematically illustrates the neural circuit which
was simulated. Descending excitatory and inhibitory inputs to the
neuron determine its ongoing firing rate; the added excitation pro-
duced by the afferent input will lead to an increase in the firing
rate. The main idea pursued in these simulations was to determine
the relation between firing rate and excitatory conductance. The
slope of this relationship represents the sensitivity, or firing rate
gain, of the neuron to an excitatory input. The question posed was
whether the firing rate gain of the independent afferent input to the
motoneuron changes, depending on the mixture of descending ex-
citatory and inhibitory conductances underlying the ongoing fir-
ing.

The results presented herein are derived from a spatially homo-
geneous motoneuron model and a two-compartment model, each
based on time and voltage dependent ionic conductances. The spa-
tially homogeneous model was not chosen because of its relative
simplicity. Rather, it was specifically chosen because any conduc-
tance change has maximal effects on the dynamics of the neuron
(i.e. there is no attenuation of conductance changes). The two-
compartment model includes a dendritic compartment with an 
L-type calcium conductance electrically coupled to an active so-
matic compartment. In this model changes in the dendritic con-
ductance are readily detected in the soma and vice versa. Again
the point was to insure that conductance changes made to any part
of the ‘neuron’ have strong effects on the dynamics. A second rea-
son for adopting a two-compartment model was to determine
whether the site at which conductances are changed has an effect
on firing rate gain. A third reason for choosing a two-compartment
model was to keep the number of possible combinations of excita-
tion and inhibition tractable. In this model there are already nine
possible ways to distribute excitation and inhibition across the
‘neuron’.

Computational procedures

The values of the somatic conductances and time constants were
taken from the extensive simulations of cat α-motoneurons done
by Powers (1993); they are presented along with other simulation
parameters in Table 1. The motoneuron model used in the present
simulations is closely related to the one used in our previous
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study (Capaday and Stein 1987a) of the input-output properties of
motoneuron pools and is essentially similar to one of the moto-
neuron models dealt with by Powers (1993), his ‘two time-depen-
dent potassium conductances and fixed spike threshold’ model.
For the two-compartment model the dendritic compartment was
electrically coupled to the soma such that the ratio of dendritic to
somatic conductance was about ten. The electrical equivalent dia-
gram of the motoneuron model is presented in Fig. 1B. The mod-
el includes resting somatic (gS) and dendritic conductances (gD)
and excitatory (geS, geD) and inhibitory (giS, giD) conductances,
which represent, in effect, descending excitation and inhibition as
shown in Fig. 1A. The somatic and dendritic excitatory and inhib-
itory conductances were independently controlled. When the
spike threshold is reached – fixed at 10 mV more depolarized
than the resting membrane potential (Vr), set to zero – the mem-
brane potential is set to 90 mV for 1 ms, thus simulating the oc-
currence of a spike (Powers 1993). It is important to note that the
time of occurrence of spikes is explicitly computed in the simula-
tions, from which the firing rate can be calculated and more im-
portantly the ratio of frequency (F) to excitatory conductance.
This is akin to the classic frequency/current (F/I) relation devel-
oped by Granit et al. (1966) and represents, in the formal sense,
the firing rate gain of a neuron (or more correctly the firing rate
sensitivity, since this ratio is not dimensionless). Following the
occurrence of a spike, a fast potassium conductance gKf at the so-
ma quickly repolarizes the motoneuron (Barrett et al. 1980),
whereas the slower calcium dependent afterhyperpolarization
(AHP) conductance (gahp) regulates the firing rate (Granit 1972;
McCormick 1990). The following pair of coupled differential

equations gives the rate of change of membrane potential in each
compartment:

(1)

(2)

This coupled pair of equations is non-linear and has no analytical
solution. Therefore, the time dependence of the membrane poten-
tial was obtained by numerical integration of the equations with
respect to time. The non-linearity is due to the product of the time
dependent AHP conductance with the membrane potential and
more generally any of the conductances may be non-linear func-
tions of time or membrane potential. The computational proce-
dures essentially followed the scheme developed by MacGregor
(1987) and commonly used in single neuron modelling (e.g. Powers
1993) and physiological neural network models (e.g. Xing and
Gerstein 1996). By setting the coupling conductance gc to zero
and appropriately scaling the membrane capacitance and resting
conductance, Eq. 2 reduces to a description of a single-compart-
ment model.

An L-like calcium conductance (gCa-L) is thought to be located
in the dendrites of α-motoneurons (Bennett et al. 1998; Hounsgaard
and Kiehn 1993; Lee and Heckman 1996). This conductance con-
tributes a net inward current that underlies bistable firing behav-
iour (e.g. see Kiehn 1991). Following the work of Booth et al.
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Table 1 Parameter values, or
range, used in the computa-
tions. These parameters would
be those of a typical motoneu-
ron with an input resistance of
1 MΩ and a resting membrane
time constant of 6 ms. Other
parameter values are given in
the text

Parameter 1-C value(s) 2-C value(s)

Membrane capacitance (Cs, CD) 6 nF 0.55, 5.46 nF
Resting conductance (gs, gp) 1 µS 0.1, 0.45 µS
Threshold (Vt) 10 mV 10 mV
Resting and excitatory reversal potential (Vr, Ve) 0, 50 mV 0, 50 mV
Inhibitory and potassium reversal potential (Vi, Vk) –10, –15 mV –10, –15 mV
Fast potassium conductance (gkf) 0.7–1 µS 0.7–1 µS
Afterhyperpolarization conductance (gahp) 2.8 µS 2.8 µS
Decay time constant of gKf 3–4 ms 3–4 ms
Decay time constant of gahp 18–22 ms 18–22 ms

Fig. 1 A schematic representa-
tion of the neural circuit inves-
tigated in the present simula-
tions is shown in A. The equiv-
alent electrical circuit of the
two-compartment α-motoneu-
ron model used in the present
simulation study is shown in B



(1997), an L-type calcium conductance was introduced in the den-
dritic compartment. The time constant of activation of this con-
ductance was set at 40 ms (Booth et al. 1997). The conductance
had a steep voltage dependent activation (half activation dendritic
potential = 15 mV) and a peak conductance of 0.18 µS (Booth et
al. 1997; Powers 1993).

A two-step process is required to obtain the steady state somat-
ic (VS) and dendritic (VD) membrane potentials, respectively. First,
the steady state membrane potential is calculated for each com-
partment assuming the other compartment is coupled to it but pas-
sive, thus:

(3)

(4)

The equivalent conductance of the dendritic compartment coupled
to the soma (gDeq) and, conversely, of the somatic compartment
coupled to the dendrites (gSeq) is given by:

(5)

(6)

From the above sets of equations (Eqs. 3–6), the steady state so-
matic and dendritic potentials for the general case where both
compartments are simultaneously active are given by:

(7)

(8)

The relation of the somatic (VS) to dendritic (VD) steady-state po-
tential is obtained by application of the voltage divider principle,
thus:

(9)

(10)

These two equations are important for calculating the steady-state
attenuation of voltage from the dendritic to the somatic compart-
ment (KD,S) and vice versa (KS,D). They are also useful for evaluat-
ing the current attenuation from the dendritic to the somatic com-
partment (and vice versa) when the latter is at a given potential
(e.g. ‘voltage clamped’). Under this condition the current attenua-
tion factor from dendrite to soma is KS,D and from soma to den-
drite KD,S (Johnson and Wu 1995).

Repetitive firing was produced by a step change of the excita-
tory conductance, at the soma (geS) or at the dendrites (geD), or
both. Repetitive firing could also be produced by a step change of
the excitatory conductances as well as a step change of the inhibi-
tory conductances (giS, giD); the total membrane conductance
would thus be increased when the two pathways are simultaneous-
ly active. A second independently controllable excitatory input is
included in the model (Fig. 1A). It represents the added excitatory
drive produced by a second input pathway to the neuron, such as
the monosynaptic inputs from group Ia afferents. In Eqs. 1 and 2
this second excitatory input is represented by an excitatory post-
synaptic potential (EPSP) conductance (gepsp), whose time course
is often calculated from the alpha function (Jack et al. 1975).
However, in the present simulations a step change of the EPSP
conductance was used, simulating a tonically active afferent input.

The analysis of transient EPSP inputs has been dealt with in a pre-
vious paper (Capaday and Stein 1987a). Obviously, when the in-
hibitory conductance is increased in any compartment the firing
rate will be reduced if the excitatory input is kept constant. How-
ever, the firing rate can be maintained at the same level by in-
creasing the excitatory conductance. The general principle in-
volved in deriving the equation for compensating for the added in-
hibition is the following. The excitatory current must be increased
by an amount that is equal and opposite to the inhibitory current
(Capaday and Stein 1987a). In the general case, however, the exci-
tatory current can be increased in any compartment. This implies
that the current attenuation from one compartment to the other
must be also taken into account. From these principles it can be
shown that the change in excitatory conductance needed to com-
pensate for the inhibitory conductance is given by the following
equation:

(11)

where Vtx and Vty are the membrane potentials in compartment x
and y, respectively, when the soma is at spike threshold (Vts). This
equation is applicable to the case where Vts is fixed, which is the
case in the present model. Vtx and Vty can be calculated from
Eqs. 7 and 8. Equation 11 states that the amount (∆ge,y) by which
the excitatory conductance in compartment y (a nominal variable,
y = either s or d) needs to be increased is a proportion of the in-
crease (∆gi,x) of the inhibitory conductance in compartment x (a
nominal variable, x = either s or d) scaled by the ratio of the cur-
rent attenuation factors (KS,x/KS,y). It can be easily verified from
Eq. 11 that, at spike threshold in the soma, the added excitatory
current will be equal and opposite to the inhibitory current, with
each current scaled by the appropriate current attenuation factor.

All numerical calculations were done with Mathcad 2000 and
graphical display of simulation outputs with Matlab 5.3.

Results

The time course of the membrane potential (Vm) during
several discharge cycles of the single-compartment α-
motoneuron model is shown in Fig. 2. Repetitive dis-
charge was produced by two different combinations of
excitatory and inhibitory conductances producing a
steady-state discharge rate of 19.2 impulses/s (Imp/s). An
excitatory conductance of 0.46 µS acting alone produces
an interspike interval (ISI) of 50.2 ms or, equivalently, a
firing rate of 19.2 Imp/s. If, for example, a tonic level of
inhibition of 0.2 µS is added, the firing rate decreases to
15.6 Imp/s (ISI = 64.2 ms). To compensate for the effects
of the added tonic inhibitory conductance, according to
Eq. 11 an increase in the excitatory conductance of 0.1 µS
is required to restore the firing rate to 19.2 Imp/s. As can
be seen in Fig. 2, regardless of the particular mixture of
active excitatory and inhibitory conductances, the time
course of the membrane potential and thus the firing rate
are essentially identical. This is entirely in agreement
with the classic intracellular recording and current injec-
tion studies of Granit et al. (1966) and Schwindt and Cal-
vin (1973). However, the question at hand is whether the
firing rate gain – defined as the slope of the relation be-
tween firing rate and excitatory conductance, or injected
current in the work of Granit et al. (1966) – is dependent
on the mixture excitatory and inhibitory conductances
acting to produce a given firing rate? The results present-
ed in Fig. 3 address this question. 
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Consideration of the primary firing range

For the two models considered here the relation between
firing rate and excitatory conductance is linear over a
substantial portion of the firing range (Fig. 3A, C), as it
is for real motoneurons (Granit 1972). The firing rate
gain in this ‘primary range’ was calculated as the slope
of the best fitting least-mean-square line, so as to make
the simulation results readily comparable to experimen-

tal results. In Fig. 3A firing of the single-compartment
model was produced by activating the excitatory conduc-
tance only, the firing rate gain (F/ge) being 49.1 Imp/µS.
This corresponds to a typical cat lumbar α-motoneuron
having an F/I slope in the primary range of firing of
about 1.0 Imp/nA (Granit 1972). In Fig. 3B a tonic in-
hibitory conductance of 0.2 µS was added. In order to
obtain firing rates over the same range as in Fig. 3A, the
excitatory conductance was increased by a constant
amount of 0.1 µS, as determined by Eq. 11. Note that the
relation between firing rate and excitatory conductance
is essentially identical (49.08 Imp/µS), except that it is
displaced by 0.1 µS along the abscissa. This result, on its
own, makes the point that the firing rate gain is indepen-
dent of the particular mixture of excitatory and inhibito-
ry conductances – and hence the total membrane conduc-
tance – underlying the firing. The same sort of result is
obtained with the two-compartment model (Fig. 3C, D).
The firing rate gain for the two-compartment model was
52.6 Imp/µS. The slightly greater gain for the two-com-
partment model is the result of shunting of the AHP cur-
rent to the dendritic compartment.

The added effect of a second active excitatory path-
way is equivalent to increasing the excitatory conduc-
tance by a constant amount ∆ge. It is obvious, given the
nearly linear relation between firing rate and excitatory
conductance, that this will simply shift the F/ge relation
upward by a constant, without a change of slope (Fig. 3).
Indeed, for the single-compartment model the y-intercept
increased by 8.6 Imp/s and 4.2 Imp/s for the two-com-
partment model. In other words, the firing rate gain is
the same for all input pathways to a neuron and it is in-
dependent of the particular mixture of excitatory and in-
hibitory conductances underlying the firing. The firing
rate gain is also independent of the distribution of excita-
tory and inhibitory conductances across the neuron. This
point will be dealt with in more detail in the section on
the secondary firing range. Note that the increase in fir-
ing is greater for the single-compartment (8.6 Imp/s)
than for the two-compartment model (4.2 Imp/s). Again,
this is because the dendritic compartment shunts part of
the added excitatory current.

Transient firing

The analysis thus far dealt with steady-state firing be-
haviour. Clearly, many neural operations are transient in
nature. The question thus arises as to whether the above
principle applies to the situation where the input from
the second excitatory pathway is phasic (e.g. during a
burst of activity). The results shown in Fig. 4 address
this point from the perspective of the adaptation of firing
rate, which is equivalent to the effects of a transient in-
put. It is well known that upon application of a steady
depolarizing current neurons fire initially at a relatively
high rate, which then adapts over several interspike in-
tervals to a steady state rate. In the present models, adap-
tation is due to summation to a maximal value of the
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Fig. 2 Steady-state (adapted) repetitive discharge produced by
tonic levels of excitatory conductance (ge) acting alone (top), or in
combination with a tonic level of inhibitory conductance (gi)
0.2 µS (middle and lower). Note that when the inhibitory conduc-
tance is increased, the firing rate (F) is obviously reduced (mid-
dle). However, when the excitatory conductance is increased by an
amount ∆ge=0.1 µS, as calculated from Eq. 11, the firing rate is re-
stored to its initial value (bottom)
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Fig. 3A–D The lines labeled
with asterisks represent the re-
lation between steady-state dis-
charge rate and excitatory con-
ductance for the single- and
two-compartment models. In
the graphs shown in A–D of
the figure the points marked by
× represent the change in firing
resulting from an added affer-
ent input producing an excita-
tory conductance (∆ge) of
0.1 µS. Note that the points are
all plotted against the value of
the excitatory conductance pro-
duced by the descending path-
way, to emphasize that the ef-
fects of the afferent pathway
are simply to produce an up-
ward bias of the F/ge relation,
without affecting its slope. For
the two-compartment model
the excitatory inputs were all
localized at the soma. Note also
that the same added afferent in-
put (∆ge) is less effective in in-
creasing the discharge rate of
the two-compartment model. In
C and D a tonic inhibitory con-
ductance of 0.2 µS was added.
Inhibition simply shifted the
F/ge relations to the right, with-
out affecting their slope

Fig. 4A, B This figure considers the transient firing of the single-
compartment α-motoneuron model. In the graph shown in A the
slope of the relation between the firing rate in the first interspike
interval (1st ISI) and the excitatory conductance is much steeper
than the steady state relation (92.9 Imp/s/µS vs 49.1 Imp/s/µS). In
the graphs shown in A and B of the figure the points marked by
filled circles represent the 1st ISI resulting from an added afferent

input (ge) producing an excitatory conductance of 0.1 µS. Note
that the points are all plotted against the value of the excitatory
conductance produced by the descending pathway, to emphasize
that the effects of the afferent pathway are simply to produce an
upward bias of the transient F/ge relation, without affecting its
slope. In B a tonic inhibitory conductance (gi) of 0.2 µS was add-
ed, but the slope of the transient F/ge relations remains the same



AHP conductance following each spike. Real motoneu-
rons also adapt their firing rate due to an increase in the
firing threshold (Schwindt and Calvin 1972a), which can
be incorporated into a more complete motoneuron model
(Powers 1993). Following the analysis of Kernel (1965),
the instantaneous firing rate over the first interspike in-
terval (1st ISI) was used to illustrate transient behaviour.
The slope of the F/ge relation for the 1st ISI is much
steeper than the steady-state slope (Fig. 4A), as it is in
real motoneurons. Does the slope of the 1st ISI, or that
of any other ISI during the firing transient, depend on the
mixture of active excitatory and inhibitory conductanc-
es? The answer is shown in Fig. 4B, where a constant in-
hibitory conductance of 0.2 µS was added and the excita-
tory conductance increased by 0.1 µS, as determined
from Eq. 11. Hence, relative to Fig. 4A, the lines are dis-
placed to the right along the abscissa by 0.1 µS. The im-
portant point is that, similarly to the slope of the steady-
state relation, the slope of the transient F/Ge relation is
essentially the same in the two conditions (92.9 Imp/s/µS
vs 95.1 Imp/s/µS). The conclusion is that balanced mix-
tures of excitatory and inhibitory conductances do not
affect the firing produced by a transient burst of activity
of the second pathway. The transient change in firing
rate remains the same, regardless of the mixture of exci-
tatory and inhibitory conductances producing the ongo-
ing firing (Fig. 4B).

Finally, the results presented above apply equally to
the case when the inhibitory reversal potential is the
same as the resting potential (i.e. shunting inhibition), or
when it is more negative (see also Holt and Koch 1997).

Consideration of the secondary firing range

The single-compartment and the two-compartment mod-
els show a secondary firing range when driven by in-
tense depolarizing drives (Fig. 5A). An interesting ancil-
lary observation was made by considering either the F/ge
relation (i.e. firing produced by conductance changes) or
the F/I relation (i.e. firing produced by current injection)
with the firing rate normalized by the reciprocal of the
slow AHP time constant. It was found that the upward
curvature of the curves begins nearly exactly at the point
where the duration of the ISI becomes equal to that of
the slow AHP time constant. Thus in the model the sec-
ondary firing range arises partly as a result of ‘satura-
tion’ of the slow AHP conductance (but see the next sec-
tion).

The more important issue here is whether mixtures of
postsynaptic conductances allow for control of firing rate
gain when the F/ge curves are non-linear. The F/ge curves
for five different combinations of excitatory and inhibito-
ry conductances are shown in Fig. 5A. These combina-
tions were chosen for their physiological pertinence, as
for example the case of joint somatic and dendritic exci-
tation with inhibition at the soma. For the most part the
curves are translated along the abscissa, with little change
in their shape. There are, however, some cases were the
steepness of F/ge curve is changed. The clearest example
is the effect of dendritic excitation added to somatic exci-
tation (geS and geD in Fig. 5A). The F/ge curve appears
steeper when the dendritic excitation is added to somatic
excitation, as has been previously reported in motoneu-
rons (e.g. Shapovalov 1972). However, there is a problem
in reporting data in this way. The x-axis in Fig. 5A repre-
sents the somatic current, but not the total current acting
at the spike generating zone. Similarly, in the report of
Shapovalov (1972), the x-axis represented injected cur-
rent at the soma, but the total current acting at the spike
initiation zone included dendritic currents activated syn-
aptically, as well as the intracellularly injected somatic
current. As a result the relation between firing rate and
excitation is made to appear steeper than it is. A formally
correct and intuitive way of determining whether the fir-
ing gain is changed by mixtures of conductances, or by
strategic placement of conductances across the neuron, is

73

Fig. 5 Examples of F/ge curves over a full range of depolarizing
drive for various combinations and spatial distributions of excita-
tion and inhibition across the two-compartment model (A). For
example, simultaneous somatic excitation and inhibition is repre-
sented by geS and giS, etc., in the legend. Note the obvious second-
ary range of firing (steepening of the F/ge relation). Note also that
the change of firing rate versus the ongoing firing rate (i.e. a mea-
sure of firing rate gain) is the same regardless of the mixture of
postsynaptic conductances acting on the neuron, or their spatial
distribution



to plot the change of firing rate as a function of the ongo-
ing firing rate, as shown in Fig. 5B. It can be seen that in
fact firing rate gain is not really different for any of the
combinations of excitation and inhibition, or for different
spatial locations of these variables.

L-like calcium conductance activation and the secondary
firing range

Activation of the L-like calcium conductance leads to a
persistent inward dendritic current and a steepening of
the F/ge current (Fig. 6A). This is as expected and con-
sistent with one of the functional roles of this persistent

current (Schwindt and Crill 1982). Activation of the per-
sistent inward calcium current resulted in a secondary
range whose slope was about 1.74 times steeper than
when the dendritic compartment was passive (Fig. 6A).
However, despite the fact that the F/ge relation is non-
linear and that the voltage dependent activation of the
persistent inward current is itself a non-linearity, activa-
tion of inhibitory conductances did not noticeably
change the shape of the F/ge relation (Fig. 6B). Note also
that in the presence of inhibition activation of the L-type
calcium current occurred at a slightly higher firing rate.

Feedforward versus feedback inhibition

The added inhibition so far dealt with is of the feedfor-
ward type. That is, it is not a function of the firing rate of
the neuron. What if the added inhibition were a function
of the firing rate of the neuron? This would be true in-
hibitory feedback. As expected from the basic property
of a closed loop negative feedback, the firing rate gain of
the neuron is decreased (Fig. 7A). In this example, inhib-
itory feedback was made either directly proportional to
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Fig. 6A, B Effects of activating an L-type calcium conductance in
the dendrites on the F/ge curve of the two-compartment model. 
A Note the steeper (1.74 times) secondary firing range, starting at
about 40 Imp/s, when the L-type calcium conductance is activated. 
B In the presence of an activated L-like calcium conductance, the ad-

dition of somatic inhibition (0.3 µS) translated the F/ge curve to the
right without affecting its shape. Note also that in the presence of in-
hibition the L-type calcium conductance was activated at a slightly
higher firing rate. The same qualitative result is obtained by distrib-
uting inhibition to the dendritic as well as the somatic compartment

Fig. 7 The effects of inhibitory feedback on the F/ge relation of the
two-compartment model are shown in A. In this example the exci-
tatory and inhibitory conductances were all localized to the somatic
compartment. Note the obvious secondary range of firing (steepen-
ing of the F/ge relation) under control conditions. Note also how in-
hibitory feedback extends the linear range of the F/ge relation. 
B shows an example of the F/ge relation when the excitatory con-
ductance (geD) is localized entirely to the dendritic compartment



the excitatory conductance, hence directly proportional
to the firing rate, or directly proportional to the square
root of the excitatory conductance, hence a non-linear
function of firing rate. Inhibitory feedback in each case
extends the linear range of the F/ge relation. In no case
could the feedback produce a more curvilinear relation
than the control curve. However, a particularly striking
observation using the two-compartment model was that
the relation between firing rate and dendritic excitation
is markedly non-linear (Fig. 7B). This is because of the
strong and non-linear attenuation of current as it flows
from the dendritic to the somatic compartment. In any
case, this shows that a non-linear F/ge relation is intrinsic
to a spatially distributed neuron model and that special
mechanisms for producing such relations need not be in-
voked (e.g. Carandini and Heeger 1994).

Discussion

In this paper I have shown in a variety of ways that the
firing rate gain of a neuron cannot be controlled by bal-
ancing excitatory and inhibitory conductances (i.e. feed-
forward control). Thus, for example, the firing rate gain
of an afferent input remains the same, regardless of the
combination of excitatory and inhibitory conductances
activated by descending inputs. The present conclusion
corroborates and extends our earlier finding (Capaday
and Stein 1987a) and that of Holt and Koch (1997), who
have reached the same conclusion based on an analysis
of the steady-state firing of a cortical neuron model.
Here I have shown that this principle applies to transient
and steady-state firing modes. I have also shown that this
principle applies equally to linear and non-linear F/ge, or
F/I relations, as well as when synaptic inputs activate
voltage dependent intrinsic conductances such as the L-
type calcium conductance. Furthermore, I have systemat-
ically investigated different spatial combinations of exci-
tation and inhibition distributed across the neuron. Firing
rate gain cannot be controlled by different spatial distri-
butions of excitation and inhibition. In this study I spe-
cifically dealt with the firing rate gain of an added exci-
tatory input to a neuron whose firing was maintained
constant despite added inhibition (Eq. 11). This point is
important since the added excitatory input acts in each
case on a neuron with different total membrane conduc-
tance; but despite this the change of firing rate is the
same.

It was also shown, as expected, that inhibitory feed-
back does change a neuron’s firing rate gain (Fig. 6).
Thus, to the extent that the model of Carandini and 
Heeger (1994) incorporates true inhibitory feedback, the
firing rate gain will be changed. However, it appears that
inhibitory feedback will change the gain by a constant
(Fig. 5), rather than as a function of the input (e.g. lumi-
nous contrast) as suggested by Carandini and Heeger
(1994). Furthermore, the observation that the relation be-
tween dendritic excitation and firing rate is non-linear
makes two points at once. First, linear F/ge or F/I rela-

tions obtained from current injection at the soma are not
general descriptors of a neuron’s input-output properties.
Second, non-linear curves relating firing rate to excita-
tion need not be produced by combinations of excitation
and inhibition as suggested by Carandini and Heeger
(1994).

Why is firing rate gain independent of the particular
mixture of excitatory and inhibitory conductances under-
lying the firing? Another way of asking the question is
why does the time to fire (tf) not change when increasing
the excitatory conductance compensates the effects of an
added inhibitory conductance. For the models considered
here, it is not possible to obtain a closed form solution
for tf because the equations cannot be integrated. Howev-
er, an intuitive understanding of the problem can be ob-
tained by considering a simplified linear parallel conduc-
tance model in which there are three conductances, the
resting conductance (gr), a variable excitatory conduc-
tance (ge), and a variable inhibitory conductance (gi).
The time to fire of all such models is akin to the simple
RC-neuron model of Lapique (1926) and is given by:

(12)

and

(13)

where τm = Cm/(gr+ge+gi) is the membrane time con-
stant, Cm the membrane capacitance, Vss the steady state
membrane potential and Vt the firing threshold. By con-
sidering only the first term of a Taylor series expansion
about Vt, Eq. 12 reduces to tf = τm(Vt/Vss). With Vt con-
stant, the firing rate (1/tf) is a linear function of Vss.
Clearly, if τm and Vss are changed in equal proportion, tf
will not change. Indeed, the compensation Eq. 11 leads
to a slightly smaller Vss and a slightly smaller τm, result-
ing in a tf that is essentially unchanged. The linearized
version of Eq. 12, relating τm to 1/tf, also distills the es-
sence of the idea that by controlling τm one can control
the slope of the relation between excitation (i.e. Vss is
proportional to net excitatory drive) and the time to fire,
as suggested by Carandini and Heeger (1994). However,
the flaw of the argument is that τm cannot be changed in-
dependently of Vss, as can be seen by considering the
equations for τm and Vss.

The present computational demonstration that the fir-
ing rate gain is independent of the particular mixture of
activated excitatory and inhibitory conductances under-
lying the firing is entirely in agreement with the experi-
mental results of intracellular current injections in moto-
neurons (Granit et al. 1966; Granit 1972; Schwindt and
Calvin 1973). These authors clearly showed that the in-
teraction between injected excitatory currents and natu-
rally produced synaptic inhibitory currents (i.e. activa-
tion of an antagonistic nerve) resulted in linear algebraic
effects on firing rate. Granit in his review monograph
(1972) wrote ‘...the motoneuron adds E (excitation) and
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I (inhibition) algebraically in terms of spike frequen-
cies’. Here it was shown that this result applies equally
to the physiological case where all current flow is pro-
duced by activating conductances. In the past, the expla-
nation for the simple translation of the F/I curves along
the abscissa was that because of cable properties, synap-
ses had little shunting effect visible at the soma (e.g. Rall
1977). Here, I have shown that strong shunting directly
at the soma does not decrease gain (i.e. shunting inhibi-
tion, per se, is not divisive). Indeed Schwindt and Calvin
(1973) concluded that ‘While such conductance changes
due to sustained synaptic input may produce changes in
the efficacy of other inputs... only the net driving current,
however applied, seems to be important in the rhythmic
firing mode.’

The question may arise, however, as to whether a suf-
ficiently large increase in membrane conductance would
affect the firing rate gain. Mathematically, based on
Eq. 11, an increase in inhibitory conductance, no matter
how large, can always be offset by an added excitatory
conductance. Parameter values, however, must be physi-
ologically plausible. In the model calculations I have
used realistic values of excitatory and inhibitory conduc-
tances that spanned the primary (Fig. 3) and secondary
(Fig. 4) range of motoneuron firing. This issue was also
addressed experimentally by Granit et al. (1966) where
large amounts of excitation and inhibition were used.
The conclusion that firing rate gain was unchanged in
the primary and secondary range remained valid, even
when the largest inhibitions possible were produced.

One way to summarize the results presented here is
by the following statement. The main determinants of
firing rate gain in the models considered here are the
conductances that regulate the interspike interval (gahp)
and any other intrinsic conductance such as gCa-L, not the
particular mixture of synaptic excitatory and inhibitory
conductances driving the firing. Other currents/conduc-
tances, which exist in different combinations and propor-
tions in different neuronal types, such as the voltage and
calcium dependent Ic current, or the voltage dependent 
IA current, can also determine the interspike interval 
(McCormick 1990) and thus the firing rate gain. It is
noteworthy that neuromodulators affect intrinsic conduc-
tances, which in turn affect firing rate gain. For example,
norepinephrine and acetylcholine act, at least in part, by
decreasing the AHP conductance of cortical pyramidal
neurons and thus increase their excitability (Nicoll
1988). In mammalian α-motoneurons, serotonin (5-HT)
activates an L-type calcium conductance that is, in addi-
tion, voltage dependent (see details in Booth et al. 1997).
The resulting inward current increases the slope of the
F/I relation and thus the firing rate gain, as first noted by
Schwindt and Crill (1982). This conductance can also be
activated by type I metabotropic glutamate receptors
(Svirskis and Hounsgaard 1998). This implies that a neu-
rotransmitter mediating fast excitatory synaptic transmis-
sion may also indirectly activate an intrinsic depolarizing
current and thus induce a gain change. However, it is not
the synaptic current per se that produces the gain change,

but ligand action on receptors capable of activating in-
trinsic neuronal conductances.

In conclusion, I suggest that a true change of firing
rate gain measured experimentally will be due to: (1) the
effects of neuromodulator substances acting postsynap-
tically on intrinsic conductances contributing to the dis-
charge rate, (2) inhibitory feedback, or (3) presynaptic
inhibition. However, for the first two cases the firing rate
gain will be modified for all inputs to the neuron. In 
contrast, presynaptic inhibition of afferent terminals 
(Capaday and Stein 1987a) or, as suggested by Abbott et
al. (1997), short-term depression of synaptic transmis-
sion are input-specific mechanisms for the control of fir-
ing rate gain.
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