
OPEN QUESTIONS IN COMPUTATIONAL

MOTOR CONTROL

AMIR KARNIEL

Department of Biomedical Engineering,
Ben-Gurion University of the Negev,

Beer-Sheva 84105, Israel
akarniel@bgu.ac.il

http://www.bgu.ac.il/�akarniel/

Received 30 March 2011
Accepted 15 April 2011

Computational motor control covers all applications of quantitative tools for the study of
the biological movement control system. This paper provides a review of this field in the
form of a list of open questions. After an introduction in which we define computational
motor control, we describe: a Turing-like test for motor intelligence; internal models,
inverse model, forward model, feedback error learning and distal teacher; time represen-
tation, and adaptation to delay; intermittence control strategies; equilibrium hypotheses
and threshold control; the spatiotemporal hierarchy of wide sense adaptation, i.e., feed-
back, learning, adaptation, and evolution; optimization based models for trajectory
formation and optimal feedback control; motor memory, the past and the future; and
conclude with the virtue of redundancy. Each section in this paper starts with a review of
the relevant literature and a few more specific studies addressing the open question, and
ends with speculations about the possible answer and its implications to motor neuro-
science. This review is aimed at concisely covering the topic from the author’s perspective
with emphasis on learning mechanisms and the various structures and limitations of
internal models.
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1. Introduction

Computational motor control is a young field of study within neuroscience, and most

of the models are still controversial. Therefore, I have decided to review the field in

the form of a list of open questions.

The very first open question in neuroscience is clearly the mind�body problem.

What is the relation between mental phenomena and physical bodies? We are not

going to discuss this question here, since the underlying assumption of the author is

that the brain in general and the motor system in particular can be usefully

described by means of computational models. The second section addresses this

assumption and questions our ability as engineers to reproduce the human function.
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The rest of the open questions listed in this review concern the structure and

function of the best computational models and the extent of their fit to the actual

neural control of movement system.

The open questions structure is aimed at covering a large portion of the quan-

titative motor neuroscience research and provides a review of the current state of the

art in computational motor control. Therefore, each section in this paper starts with

a review of the relevant literature and a few more specific studies addressing the

open question, and ends with speculations about the possible answer and its

implications to motor neuroscience. This review is aimed at concisely covering the

topic from the author’s perspective with emphasis on learning mechanisms and the

various structures and limitations of internal models. The reader is referred to

textbooks and more specific reviews for more details and other perspectives [68, 71,

84, 137, 133, 158, 135].

Before we move to the open questions, let me define the notion of computational

motor control, and then, demonstrate it by three examples of computational

models for the motor system (Fig. 1): (a) The length servo model for the stretch

reflex, namely, feedback control, (b) the minimum jerk model as an example of

optimality approaches, and (c) trial-by-trial adaptation as an example for internal

model adaptation and learning concepts.

Computational motor control covers all applications of quantitative engineering

tools, as well as other mathematical tools, for the study of the biological movement

control system, which includes the joints, muscles, sensory organs and, of course,

the nervous system [68].

Feedback control is one of the basic engineering tools in modern control theory

(Fig. 1(a)). As noted by Granit [49], the concept of servo control, as developed

by engineers in the last century, is practically as old as experimental physiology,
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Fig. 1. (a) The length servo hypothesis, illustrating the motor neuron, the muscle and joint, and the
muscle spindle in the form of a simple feedback control scheme. The alpha and gamma commands
set the desired muscle length/joint angle and the reflex loop act to follow the desired trajectory.
(b) Typical velocity profile of human reaching movement, well fitted by a minimum jerk trajectory as
well as many other optimization schemes. (c) Deviation from a straight line at the first exposure to
force perturbations, after adaptation (ct-1), during a catch trial (ct) and during the following trial
(ctþ 1), demonstrating trial by trial adaptation mechanism, adapted from [147].
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and could be traced back to Claude Bernard’s idea about the constancy of the

internal environment (1865). The stretch reflex beautifully matches the engineering

classical servo model of negative feedback: the muscle spindle reports muscle

extension to the spinal cord, and this information returns through a single synapse

over the motor neuron of the same muscle in the form of a motor command to

shorten that muscle. Basic control theory tools such as mechanical models to the

muscles, frequency response and stability analysis were extensively used to explore

this system [94, 97].

Reaching movements are basic point-to-point arm movements. They are fre-

quently used to test various computational models for the motor system. Such

models started from basic kinematic observations about the fact that we typically

perform straight line movements, using extrinsic coordinates rather than joints

coordinate to plan our movements [1, 104]. In addition, it was found that the

tangential speed of reaching movement is bell shaped; namely, the velocity

smoothly increases and decreases during the movement (Fig. 1(b)). To account for

these properties, various computational models were proposed. In these models, we

assume that the motor system is optimal in some sense, and search for the optim-

ization criterion that provides trajectories most similar to the observed arm

movements. Among models which minimized smoothness, the minimum jerk model

is probably the most successful and simple model that accounts for the straight line

and bell-shaped speed profile [40]. However, various other models successfully

described the same properties using other criteria [150, 8, 143]. Another type of

study considered computational models of the muscles and reflex loop’s nonlinear

properties to account for the observed smooth bell-shaped speed profile of reaching

movements [51, 70, 6, 81].

Adaptation is a prominent property of biological systems. Reaching movements

were found to be extremely useful in exploration of adaptation and learning and

the related computational models. The seminal study of Reza Shadmehr and

Sandro Mussa-Ivaldi [134], which became one of the most cited papers of

the Journal of Neuroscience, demonstrated that people tend to keep the reaching

movement properties (e.g., straight line and bell-shaped speed profile) at the face

of external force perturbations. They found that, during this implicit adaptation

to force perturbations, subjects used intrinsic coordinates (joint coordinates)

when extrapolating from one region of the workspace to the other. Numerous studies

followed this influential work explored the capability of the brain to adapt

to various force fields and tested various hypotheses in the form of computational

models. The most prominent concept in these studies was the simple idea of

adaptation by minimizing error from trial to trial [128, 27, 147], as depicted in

Fig. 1(c).

Using reaching movements, and later other movements, such as lifting tasks [36],

bimanual adaptation [78], and adaptive locomotion [20], the study of computational

motor control progressed and used concepts of adaptive control and learning theory

to account for the biological control of movement.
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2. Can We Build a Robot Indistinguishable from Human

in Its Motor Control Capabilities?

Turing [149] proposed an elegant test to probe the intelligence of computers. In the

Turing test, an interrogator presents written questions, by means of teleprinter, to

two examined entities: a computer and a human being. If the interrogator cannot

distinguish between the two entities after extended conversation, we would conclude

that the computer is intelligent. Numerous pages of criticism and interpretations

were written about the Turing test, e.g., [42, 114]. In this review, I address the motor

system; therefore, I wish to concentrate on one criticism of the original Turing

test which addresses the linguistic limitation of the original test, and asserts that

the ultimate test is to build a robot indistinguishable from humans in all the aspects

of its behavior. This is actually the gold standard and a necessary condition

for any computational model: can we replace the actual measured data with simu-

lation based on our best computational model, such that the replacement will be

indistinguishable?

We have focused on handmovements in one dimension and developed aTuring like

handshake test for motor intelligence [69, 75] providing a metric to evaluate human-

likeness. Another similar method to evaluate humanmachine handshake likeness has

recently been developed by [47]. It is important to note that theTuring test is based on

subjective answers of a human interrogator, while model testing is usually based on

objective comparison ofmeasured and simulateddata.However,withmultiple tests of

various individuals and conditions any limitation of the computational model will

eventually be exposed.

The implications of a positive answer to this first open question are enormous,

scientifically and practically, in building human-like robotic devices and in the

design of artificial limbs and assistive robotic devices which will interact naturally

with humans. Altogether, the first open question is essentially the ultimate open

question of computational motor control: can we build a computational model

accounting for any possible perturbation and observation of the motor system? The

study of computational motor control hypothesize a positive answer, and therefore,

the rest of the questions address specific aspects and instances of this desired ulti-

mate computational model.

3. Does the Brain Employ Internal Models

of the Body and the Environment?

The notion of an internal model in the wide sense asserts that the brain contains

some information about the controlled system, namely the musculoskeletal system

and the external world. Most scientists cannot argue against internal models when

so broadly defined, as the phenomenon of adaptation is well documented, and it

clearly indicates that the brain employs motor memory or expectations about the

world which can be termed internal models.
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The controversy begins when someone tries to draw an input�output diagram

and propose specific structure of the internal model which can be tested and sooner

or later refuted. Proposing refutable hypotheses is the best way to promote science,

and therefore, this kind of controversy is constructive. I will review here some of the

prominent structures that were proposed for the internal models, and then discuss

their implications to science, medicine, and technology.

Cyberneticians use feedback control to describe the motor system (Fig. 1(a)).

However, with the progress of control theory, and in particular, the notion of

adaptive control theory on the one hand and experimental evidence for adaptation

in human behavior on the other hand, it was suggested that the feedback controller

has to be adaptive [94], or alternatively, proposed that the brain can control the

muscles without feedback by learning the inverse map of the controlled system [60].

Figure 2(a), demonstrates the notion of an inverse controller: It is simply the

inverse of the controlled system. Kawato [76] proposed an elegant way to combine

feedback control with an inverse model ��� feedback error learning, which is

illustrated in Fig. 2(b). The feedback error learning model solves two problems

of the simplified feedforward inverse model control of Fig. 2(a). It incorporates

feedback with all its inherent advantages (noise rejection, insensitivity to changes

in parameters etc.). In addition, it uses the feedback controller output instead

of the output error as an error signal, and thus solves the problems of error

signal propagation [72, 65]. Moreover, Kawato et al. [131] proposed that the

inverse model is implemented in the cerebellum. They followed the studies of
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Fig. 2. (a) An open loop control scheme with an internal inverse model as the controller generating
the control signal to operate the plant and generate an output similar to the desired output. (b)
Feedback error learning (following Kawato [76]). The control signal is the sum of standard feedback
controller and an inverse model, where the inverse model is being adapted using the feedback controller
signal as motor error. (c) Distal Teacher (following Jordan [64]). Control scheme similar to (a), with an
additional forward model which is adapted using the prediction error and is used to propagate the
performance error back to teach the inverse model appropriately.
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Marr, Albus and Ito [61] and suggested a detailed specific model using modern

computational tools of artificial neural networks. The notion of inverse model

was later extended to multiple modes in to account for multiple contexts and

complex mapping [160], or to account for multiple inverses in the case of redundant

systems [73].

Another elegant solution to the problems of error propagation to teach the

inverse model is the distal teacher [64]. This approach employs, in addition to the

inverse model controller, another type of internal model, a forward model. A for-

ward model generates an estimation of the output given the control signal. In the

distal teacher approach, the forward model is trained in parallel to the inverse

model; the performance error is then propagated through the forward model to

obtain motor error that the inverse model adaptation algorithm can use, as

depicted in Fig. 2(c). In this approach, the forward model is learned by minimizing

the prediction error, and then it is used to transfer the performance error to the

coordinates of the controller, and therefore serves as a teacher to the controller. In

this sense, mental practice can be used to train the controller. In experiments that

require mental practice, one should also distinguish between implicit and pro-

cedural knowledge, and carefully choose the instructions to the subjects and the

measure of their success: either what they say or what they do after the mental

practice [4].

Forward models are learned from practice and can generate predictions for the

consequences of our own motor commands [38, 37]. The literature mentions at least

three flavors of these structures: predictor, state estimator, and distal teacher [67].

Figure 2(c) illustrates the possible role of the forward model as a distal teacher [64].

In studies of grip force adaptation, it was demonstrated that subjects can predict the

required grip force and a forward model was proposed to account for this behavior

[37]. Forward model as state estimator was demonstrated to be plausible exper-

imentally [159], and is used in current state-of-the-art computational models as an

essential part of optimal control scheme [133].

The neurophysiological basis of internal models is under research. Among the

regions of the brain postulated to be involved in forming and housing, the internal

models are the motor cortex [89, 113] and the cerebellum [58, 131, 59, 121, 22].

These studies can shed light as to the location of the postulated internal models but

cannot provide a direct evidence for their existence. In my opinion, the best evidence

for internal models comes from psychophysical experiments, in which the limitation

of our ability to adapt or transfer are quantitatively exposed, informing us of the

coordinates and structure of the internal models.

Recent studies employed this notion of internal models with other tasks, such as

using tools [24, 58], bimanual coordination [78], locomotion [20, 123], and lifting [15,

36, 95]. Altogether, I find the notion of internal models extremely useful to generate

testable hypotheses and represent our knowledge about the motor system. In fact,

many of the open questions in this review refers to the structure, capabilities, and

limitations of these internal models.
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4. Is the Brain Capable of Representing the Flow of Time?

A system is capable of representing time, if it is possible to extract the time, t, from

its state [74]. Numerous studies suggest the existence of explicit timing structures in

the brain. Accurate musical performances are frequently explained as being based on

biological clocks or internal timekeepers [112]. According to Ivry [62, 140], there is

evidence for the involvement of many neural structures in the task of time rep-

resentation, including the cerebellum, basal ganglia and some cortical structures.

Time representation has been extensively discussed in the context of neurophy-

siology, computational models and behavioral studies [156, 154, 77]. However,

within the context of adaptation to time-varying force perturbations, all the

attempts to expose such time representation failed [74]. This clearly indicates that

the motor system does not use time representation for motor adaptation. Current

evidence suggests that the motor system employs only state representation, namely

position and its time derivatives, such as velocity and acceleration, for adaptation to

force perturbations [74, 21]. This evidence is relevant also to the structure of internal

models discussed in the previous section as it limits their possible structure to

mapping based on position and velocity, refuting the option of rote memorizing of

time dependent control function [21]. Adaptation to a delayed force field [88],

estimation of stiffness with delay [109, 107, 119, 120], or even assessing simulta-

neity, does not necessarily require representation of time in the form of an internal

clock. These can all be accounted for by regression over force and position variables

[107, 109, 118].

In the previous section, I discussed a special type of internal representation,

the forward model [103, 67, 37]. This representation can be used for prediction of

the outcome of our motor command, and importantly, it is most suitable for

describing the internal representations of delay [41]. The cerebellum was proposed

to host both internal models and time representation, and therefore, Diedrichsen

et al. [22], have recently explored this specific question with a special task that

involves timing and transfer. They conclude that the cerebellum is responsible for

state estimation while timing aspects of the task are being processed in other

areas, such as the planum temporal. An interesting speculation in the discussion

of this paper asserts that timing may be processed in a way similar to internal

speech.

As discussed in the seventh open question about learning and adaptation, it is

possible that time representation is not used for adaptation, but instead, it is

constructed by a dedicated learning mechanism for specific goals such as music

performance. However, another alternative is that all the instances of apparent

time representation are simply a disguised state representation. Only careful

analysis of the generalization capabilities and accurate temporal transfer can

potentially answer this open question with its interesting theoretical and practical

consequences, e.g., for human-machine interfaces, teleoperation, and robotic

surgery [110, 108].
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We have noted two exceptions to the lack of evidence for time representation in

the motor system. In a recent study of probing perception of simultaneity, we

found that subjects reported the distance between two events based on the time

between them and not based on the state simultaneity [117]. However, this case

clearly differs from adaptation to force perturbations as it probes the perceptual

level rather than the implicit motor adaptation mechanisms. In a careful study of

rhythmic movements, we have recently found that movement frequency ��� or

timing ��� is tightly controlled, even when explicit feedback regarding movement

frequency is not given [9]. Indeed, even when healthy individuals misestimated

the speed and the amplitude of their rhythmic movements when no visual feed-

back was given, there was little change in the frequency of their movements [87].

This kind of findings support the hypothesis that time keeping mechanism is

involved in the generation of rhythmic movements. However, this kind of time

representation could be limited to pattern generators that are based on spinal

cord coupled with arm dynamics. Thus, the option that the central nervous

system does not employ time representation for implicit motor adaptation is not

refuted.

5. Does the Motor System Use Intermittent Control?

In intermittent control, instead of continuously calculating the control signal, the

controller occasionally changes the control signal at certain sparse points in time,

according to the control law. This control law may or may not, include feedback,

adaptation, optimization, or any other control strategy. When, where and how does

the brain employ intermittency as it controls movement? These are the open

questions addressed in this section.

Evidence for intermittency in human motor control has been repeatedly observed

in the neural control of movement literature [26, 35, 54, 105, 106, 141, 156, 45].

Moreover, some researchers have provided theoretical models to address inter-

mittency [8, 17, 18, 54, 46]. Nevertheless, the vast majority of current models

involve continuous control, e.g., [148].

Intermittent control is used in engineering systems in very cheap and simple

systems, such as the thermostat in many home appliances, as well as in sophisti-

cated systems with large delays or extensive processing time requirements [46].

Intermittent control is at the base of engineering theory of switched systems [3, 93,

53, 90]; in these systems, otherwise unstable systems can be stabilized [90, 43].

Several characteristics of the motor control system suggest that one should expect to

find intermittent control strategies that minimize the effort of the central nervous

system and effectively exploit the spinal cord as a channel of information trans-

mission. These include delays in signal transmission caused by neural processing and

conduction time, and the hierarchical nature of the system in which the spinal

cord provides communication between the peripheral and the central nervous sys-

tem. Indeed, evidence for the existence of intermittent control is provided by a wide
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range of studies. Measurement of hand movements in tracking a continuous moving

target clearly demonstrate rapid movement followed by stops [105, 54, 101, 141,

102, 106, 100]. Some studies explained the intermittent nature of tracking move-

ments by a refractory period of the central nervous system [106], or \step-and-hold"

strategy where exceeding an error threshold generates movements [54, 101, 100].

Intermittent control is also at the basis of models for error correction submovements

in reaching [57, 34]. It was suggested that the neural basis of intermittent control

during tracking tasks is implemented within the cerebellum-thalamus-cortical

loop [52, 102, 151] or within a basal-ganglia-cortex-cerebellum distributed pro-

cessing modules for reaching [57]. Intermittent control is not restricted to dis-

placement of the hand, rather, it is also evident during isometric force tasks [139,

151] and combined tasks such as tracking a target while experiencing forces [141],

switching between motion and force control [152], as well as in handwriting and

drawing [152, 129]. Intermittency is also apparent in many models addressing

biological hierarchical systems, where the higher level sends intermittent com-

mands to the lower level, e.g., to switch between oscillatory activities in human

handwriting [138] or to perform complete arm movements in the octopus, where

the basic motor program was found to be embedded within the neural circuitry of

the arm itself [145].

Intermittency has also been observed in rhythmic movements [125, 26]. Doeringer

and Hogan [26] specifically explored the proposition that vision is contributing to

nonsmooth intermittent control. They found that vision is not the major source for

the lack of smoothness in this type of movement. It was found that the level of

intermittency in rhythmic movements depends on the frequency of movement in the

sense that there are two types of movements. Low-frequency movements are more

discrete-like and high-frequency movements are more rhythmic-like [86]. We have

recently found that the switching between these types of movements does not always

occur at the same frequency. When the movement frequency was gradually

increasing or decreasing, we found a reverse-hysteresis behavior in the frequency at

which the subjects switched from one movement type to the other. This phenom-

enon can suggest intermittent control, in which the switch time depends on the

movement frequency in a predictive fashion [85].

Another possible example for intermittent control in the motor system can be

found in the Minimum Acceleration Criterion with Constraints (MACC) model for

the control of reaching movement [8]. As described in the beginning of this paper,

reaching movements were studied extensively under the assumption that biological

systems evolve to find optimal solutions. Therefore, multiple cost functions were

suggested to be candidates for the optimization, and all of them produce the

characteristic bell-shaped trajectories of movement velocity. These include mini-

mizing jerk, torque change, and noise [150, 24, 40, 143, 55]. Traditionally, solutions

to a minimum criterion involving kinematic quantities have been calculated ana-

lytically using the Euler-Poisson ordinary differential equation [124]. The analytical

solution for the minimum acceleration criterion (MAC) shows nonzero acceleration
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at the boundaries. This contradicts the observed hand rest of the reaching move-

ment before and after the movement, and therefore, the MAC was rejected, paving

the way to the minimum jerk model [40]. Stein et al. [142, 143] indicated a few-

limitations of the minimum jerk model and suggested that MAC based trajectory

smoothed by a second order filter (muscle) are quite similar to minimum jerk tra-

jectories. Nevertheless, the MAC model has not been seriously considered since.

Ben-Itzhak and Karniel [8] proposed a remedy to the MAC by adding acceleration

boundary conditions and developing an analytical solution based on the Pontryagin

minimum principle [116]. To find a physiologically plausible solution, we also

assumed constraints on the maximum and minimum jerk values, and called this

criterion a \Minimum Acceleration Criterion with Constraints" (MACC). The

MACC based trajectory consists of three segments of constant jerk signal. Precise

details, as well as the analytical proof, are provided in [8]. In a first-order muscle

model, the control signal is the first derivative of the force. Since the force is pro-

portional to the acceleration, the control signal is proportional to the jerk. Thus, the

MACC predicts bang-bang control at the jerk, namely, an intermittent control

signal. A particular minor application of the MACC is in detecting onset of move-

ment [14] which can be useful for behavioral neuroscience studies requiring accurate

onset detection. Recent measurements in the cerebellum found clear evidence for an

intermittent-control strategy [91, 161]. In these studies, it has clearly been shown

that the activity of cerebellar Purkinje cells demonstrates bistability ��� bursting

activities separated by pauses.

The concept of intermittence control has recently been studied for the control of

inverted pendulum [92], and a thorough review of such a computational theory for

intermittence control was written [44]. These and other models of intermittence

control should be further extended to provide specific predictions for neural acti-

vations in various levels of the motor system. Whether neural recording will

support such predicted transitions are the open questions to be explored. The

implications of a positive answer include the improvement of movement disorder

diagnostics, and the design of optimized haptic human robot interfaces. This

could be utilized by concentrating on the relevant transition times in the motor

command.

6. Does the Motor System Represent Equilibrium Trajectories?

One of the possible underlying mechanisms for intermittence control that was dis-

cussed in the last section is the threshold phenomenon. The threshold phenomenon

is observed in each and every neuron and muscle tissue: every excitable cell in the

body requires a minimum value of depolarization in order to generate an action

potential.

Feldman [32] proposed that this basic threshold phenomenon governs the

operation of motor neurons. These neurons are interconnected with the muscle

and muscle spindles of antagonistic muscle groups, and thus, enable the higher
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level of the control hierarchy to send motor command about the desired limb

equilibrium position. This is achieved by determining a parameter he called

lambda (�Þ, which represents the actual threshold of neural activation in the

system. The reader is referred to the textbook [84] and literature for support [32],

and criticism [33, 111] of this theory. One limitation of the lambda model is that

there is no simple relation between the value of lambda and limb position, since

that will depend on the load, and may require in some conditions complex

equilibrium trajectories [7, 19].

Bizzi et al. [115] led a series of studies in which a monkey had to reach a

target without proprioception with or without perturbations. The results clearly

demonstrated that the arm continues to move towards the target as soon as the

obstacle is removed. These results support a theory according to which a stable

equilibrium point is generated by the nervous system. Moreover, this equilibrium

point can change with time and generate an equilibrium trajectory [11, 115].

Equilibrium point control was examined by Gomi and Kawato [48] who measured

the arm stiffness and found clear evidence against the hypothesis that the brain

sends as a motor command only an equilibrium-point trajectory similar to the

actual trajectory.

We have opened this review with the seminal study of Shadmehr and Mussa-

Ivaldi [134] which demonstrated adaptation to force perturbations and after effects

of learning in catch trials. That study, as well as many other adaptation studies,

clearly demonstrated that equilibrium points or equilibrium trajectories are not

sufficient to account for our motor behavior, shifting the research from the lower

reflex loop to the level of internal representation and the structure of internal

models. Nevertheless, the question is still open since it is possible to assert that

equilibrium trajectories exist, and that they are adaptive. There were only a few

attempts to combine these two approaches, namely equilibrium point control and

adaptation, e.g., [50]. Thus, a computational theory of threshold control, e.g., based

on the lambda model, which will account for the rich literature about adaptation to

force perturbations has yet to be developed.

7. What is the Difference Between Learning and Adaptation?

Structural{Temporal Hierarchy of Wide Sense Adaptation

Adaptation in the wide sense (WSA) is accommodation to the environment. In

other words, any processing of sensory information that eventually changes

the motor behavior in one way or the other is WSA. Figure 3 presents a map of four

instances of this phenomenon: Feedback, adaptation, learning and evolution,

where sensory information is integrated and employed to change the control signal

in various techniques and time scales. There are some clear boundaries and parallels

to engineering concepts: e.g., between feedback that refers to signal flow, and

adaptation that refers to changes in parameters, and between evolution and the

other instances of WSA. However, the neural implementation of skill learning and
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other types of learning, and their specific structural and temporal structures, are the

open questions discussed at the end of this section. I start with a description of the

system approach, and then, I will clarify the scope of each part of this structural

temporal hierarchy, and address each type of the WSA separately.

Figure 3 demonstrates the structural�temporal hierarchy in a block diagram.

When we think about a control problem we usually have at least two systems: The

controller and the controlled system. For example, if we wish to control the position

of the hand, we have the controlled system on the one side, i.e., the relation between

the neural command to the muscles and the position of the hand, and the controller

on the other, i.e., the relation between the intended movement and the neural

signals to the muscles implemented by the brain. Other distinctions are possible,

such as considering the muscles as part of the controller, as nicely illustrated in the

equilibrium point control theory.

A prominent feature of the biological system is to use the sensory information

about the actual position of the hand in order to improve the control of its position.

This simple idea was used by engineers from the beginning of cybernetics (in

part following observation of nature), and was later developed to include also

adaptive control. We follow the engineering terminology, use it to define a hier-

archy of methods to improve the control signal, and then try to use it to describe

the brain as it controls movements. The basic idea of this hierarchy was first

presented in [71], and later accurately defined in [68]. Here, I review the main

definitions, and present the open question about the distinction between learning

and adaptation.
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Fig. 3. The temporal structural hierarchy of wide sense adaptation in the motor control system.
Feedback, adaptation, learning and evolution are instances of wide sense adaptation where sensory
information is integrated and employed to change the control signal in various techniques and time
scales. Left: The hierarchy on the temporal structural space. Right: Block diagram of control system
demonstrating feedback, adaptation, learning and evolution. Adopted from [68].

September 13, 2011 10:05:31am WSPC/179-JIN 00274 ISSN: 0219-6352
FA2

402 Karniel



7.1. Feedback

We refer to a system as feedback controlled when sensory information is fed back

to generate the control signal during the performance of the task. Figure 1(a)

describes the notion of feedback in a block diagram. The signal flows from the

sensory system to the control system. This path could be long or short depending

on the specific system; however, there is no change in the control system, and the

changes in the control signals are the result of changes in the sensory signals. In the

biological system, the shortest path is typically described as the feedback reflex

loop which includes a monosynaptic pathway. However, there is a shorter pathway

for feedback within the muscle. The simple mechanical property of stiffness, i.e.,

the force being proportional to the length of the muscle, could be referred to as

feedback control, since the control signal ��� the force ��� is influenced by the

sensory signal and the length of the muscle. This last example demonstrates a

limitation of the engineering approach: the blocks usually hide the detailed

structure, and therefore, if we define the control signal as neural input we would

never note the internal feedback loops within the muscle and joint. However, there

is always a tradeoff, and the simplicity we obtain from this approach helps us in

clarifying the notions. It should be noted that the hierarchy described here, for a

specific level of abstraction, could be multiplied within each block. Let us sum-

marize this discussion with a formal definition of feedback control: Feedback

control of a given input�output system is the usage of the output signal in order to

generate the control signal in real time, thus, the only delay is generated by the

propagation of signals through the channels and the control system. Figure 1(a)

captures the main properties of feedback, namely \signal flow in real time" and \no

structural change in the system, only flow of signals."

7.2. Adaptation

Adaptive control is a control strategy where the controller can change its function to

accommodate changes in the controlled system or in the environment, see e.g., [5].

Here, not only the signals are changed, but the control system is also changed based

on the sensory information received. These changes in the system are typically slow

when compared to the time scale of the feedback. Figures 2(b)�2(c) and 3(b)

describe various instances of adaptive control systems. The controller includes a

finite set of adjustable parameters; an adaptation algorithm observes the flow of

signals to and from the control system, and determines how this set of parameters

should change to improve some measure of performance. This third system ��� the

adaptation algorithm ��� is implicit in the dashed or dot-dashed lines and is not

drawn in a dedicated box in these figures. Let us summarize with a formal definition:

Adaptive control is the change in the parameters of the control system generated

after observation of previous control and sensory signals in order to improve

the future performance of the system on a well-defined task or measurements of

performance.
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7.3. Learning

Learning generates a completely new behavior, as in skill learning, or employs a

completely new strategy to achieve a known behavior. In both cases, the controller

may change its structure. This is in contrast with adaptation, which refers to a

change in parameters of the controller that improves the performance in certain

types of existent behavior, without any structural change. Such structural changes

in the biological system may include the recruitment of new brain areas or gener-

ation of a new neural circuit for specific task, which, in turn, cause behavioral

implications such as change in the speed accuracy tradeoff [122]. In artificial sys-

tems, the controller may be replaced with another controller. At this point, our

technology does not provide an effective learning machine, and it is highly possible

that observing the biological system and modeling the neural control of movement

may generate new control strategies that would later be used for artificial intelligent

control. Later, these will be perfected by control engineers and return to serve as

models for the brain. In summary, learning control is a structural change of the

control system in order to generate a new type of behavior.

7.4. Evolution

In the proposed hierarchy, evolution is the last resort. It may take many years, and

it can potentially generate the largest change due to the evolution of a new species or

in the engineering term, a new kind of controller. Evolution is an arbitrary change in

the controller that can include any change in structure, function, connectivity,

parameter values, learning algorithms and adaptation protocols. The best change is

chosen by mutation and then survival of the fittest, and therefore, this process may

be extremely long.

Altogether, the distinction between feedback and adaptation, and between

learning and evolution, is quite clear and well defined, whereas the distinction

between adaptation and skill learning is still a subject of active research both about

the computational representation, and the neural implementation and the engin-

eering counterpart in state of the art artificial learning control literature.

8. Is the Neural Control of Movement Optimal? In What Sense?

In the temporal�structural hierarchy of wide-sense adaptation, we have seen that

sensory information is used to improve the performance of the motor system.

However, the desired performance was not directly addressed. A different line of

research cares less about the process of learning and adaptation and more about the

desired outcome, typically under the assumption that after long practice the system

converges to the desired outcome. It is important to note, that any desired outcome

can be referred to as optimal (e.g., by defining optimal behavior in the sense of being

close to that specific desired outcome). Therefore, the research concerning optimal

motor control should consider three open questions for each task being studied: (a)

Does the motor control system strives to reach a specific optimal behavior? (b) Does
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it actually obtain the optimal behavior in certain conditions? (c) What is this

specific optimal behavior? The last question could be also phrased as: In what sense

is the behavior optimal? or: What is the minimized cost function? Finally, since we

posed this question for each and every task, we can also ask about the generalization

and transfer within and between tasks.

Three branches of motor neuroscience use optimization techniques and termi-

nology: trajectory formation studies, optimal feedback control, and Bayesian

modeling studies. In trajectory formation studies, the question is typically which

optimization criterion will predict the observed arm trajectory, e.g., minimum jerk

[40], minimum acceleration [8], minimum object crackle [25], minimum hand jerk

[146], minimum torque change [150], and minimum end-point variance [55].

Optimal feedback control is well developed in control theory [82] and has recently

been used successfully in modeling human movement control [148, 23, 132, 136].

The main challenge within this framework is to derive the optimal control signal

with real nonlinear time-varying biological systems, given specific cost function and

the assumptions as to the structure of the noise.

Optimal feedback control is typically based on state feedback, and requires a

state estimator which includes a forward model. The idea that the brain may employ

state estimation to optimally combine sensory and predictive information was

supported by many studies in the last decade [154, 99, 79]. Since optimal feedback

control schemes typically use a simple feedback controller, an inverse model is not

always required. Instead, the desired trajectory could be implicit within the solution

of the optimal control law, accounting for the observed changes in the so-called

desired trajectory during adaptation [28, 63]. An open challenge in this field is to

develop adaptation algorithms to learn the forward model and an optimal controller

which minimizes the cost function at the same time. For example, Mazzoni and

Krakauer [96] showed that even when subjects can explicitly perform properly

within visuomotor rotation task, they continue to learn the rotation implicitly.

These kinds of studies facilitate the constructions of a complete model accounting

for all the ingredients of optimal feedback control. Another interesting perspective of

optimal feedback control is the fact that it naturally presents itself in a stochastic

environment resolving the redundancy problem (see the last open question), by

facilitating large variance in the irrelevant directions, also referred to as uncon-

trolled manifold [66, 130].

Bayesian modeling studies observe the behavior as optimal in the sense of using

prior information about ourselves and about the environment (aka internal model),

and combining this information with sensory feedback in an optimal way to combine

a posterior state estimation. The question about structure of internal model or

the sense of optimization is replaced with the selection of relevant variables

and extracting or postulating the probability distribution of the prior. Here, I just

mention this wide and successful line of study, and the reader is referred to the

literature for many examples of successfully modeling various behavioral results,

e.g., [144, 79, 31].
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9. Does Motor Memory Represent the Past or the Future?

It was suggested that the purpose of memory is to plan for the future rather than to

remember the past [2, 29, 127]. This distinction was made with regards to episodic

memory. However, such a distinction is also of interest for motor neuroscience, and

in particular in the context of motor memory where the concept of forward model is

frequently used to describe this exact phenomenon. Namely, a forward model allows

the motor system to use the past experiences in order to predict the future.

As described in the opening of this review, extensive research has been performed

concerning the ability to adapt to force perturbations during the execution of

reaching movements. This methodology was proven most useful in exploring issues

related to motor memory [80, 12]. This finding was replicated in different exper-

iments, demonstrating that people learn to adjust motor commands to compensate

for disturbing forces depending consistently on the state of motion of the limb [126,

39, 134, 38, 83, 158]. Two main features of memory, consolidation and mental

practice, were also studied in the motor control literature [80, 30, 16].

In all these studies of motor adaptation to force perturbations during reaching

movements (see Fig. 1(c)), the trial by trial adaptation is based on the past in the

sense that the expectation for perturbation in the next trial is generated by a

weighted sum of the perturbations in the past few trials. In contrast to this well-

established observation, we have recently tested the nature of predictive control

during a lifting task and found that in the case when the weight of the object

increases from trial to trial, the expectation extrapolates and essentially predicts the

future weight of the lifted object [95]. Similarly, when performing a rhythmic task

that requires a continuous increase or decrease in movement frequency, participants

changed the type of their movement (from discrete-like to harmonic and vice versa)

in a predictive fashion, apparently based on the expectation that the required fre-

quency will continue to change in the future [85]. The exact conditions in which we

predict the future and the conditions in which we use past average are still open for

future investigation.

This open question could be related to the structure of internal models. Let us

consider the forward model which predicts the expected sensory outcome of specific

motor command.On the extreme case of the file cabinet analogy, the brain can register

all motor commands and the following sensory outcome in a lookup table memorizing

the past. This lookup table could be later used to predict the outcome of any motor

command that was previously used. This kind of memory is a pure past represen-

tation; however it cannot be called a forward model, since it is not capable of pre-

dicting the consequence ofmotor commandswhichwere never issued in the past.Once

we allow interpolation or extrapolation based on this lookup table, we can call it a

forwardmodel, and then, at the same time, we start to address the future and not only

the past. As we allow our lookup table to forget past events and count more on the

statistics of the past rather than on specific events, we can no longer call it a lookup

table and we give more and more weight to addressing the future.
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On the other extreme, we can put a well-structured forward model with a few

parameters. These are learned from past examples, and facilitate temporal extra-

polation to the future.Bymapping the ability of themotor system to adapt and testing

hypotheses as to the structure of possible internal models, we can gradually map the

way in which the motor system uses past experience in order to behave in the future.

10. Discussion

The biological system is characterized by redundancy in each and every level: there

is more than one joint configuration for each location of the hand; there are many

possible muscle activations which can generate the same torque in the joint; and

there numerous possible neural activations which can bring the same muscle acti-

vation. The problem of redundancy, also known as the Bernstein problem, is

extensively discussed in the literature [10, 13]. Redundancy is a virtue of the motor

system, rather than a problem, and therefore the last question in this review is this:

How does the brain exploit the virtue of redundancy? In many cases, the brain

makes use of this virtue to obtain flexibility and reliability, rather than solves the

problem of redundancy by selecting a single solution.

Redundancy means that the mapping of the controlled plant is many-to-one:

therefore, the function of the plant is not invertible, questioning the meaning of

inverse controller in Fig. 2(a). In order to address this question properly, I will take a

short detour to address the limitations of the block diagram approach that was

adapted in this review (Figs. 1(a), 2 and 3(b)) and discuss the extent to which they

can describe a computational model and the kind of physiological data that can

support or refute a theory presented by a block diagram.

It is important to note that the block diagrams in this paper just illustrate the

verbal description. In order to use them as specific computational models, one needs

to clearly state the coordinates of the inputs and outputs, and the specific math-

ematical functions of each block in the diagram and each learning algorithm.

Moreover, specific predictions about neural recordings can be derived only when the

physiological counterpart of the blocks and the measured signals in the block dia-

gram are defined, while for specific behavioral predictions it is sufficient to define the

physiological counterparts of the observed behavioral variables. Let us illustrate

this for the block diagram in Fig. 1(a) describing the servo hypothesis for the reflex

loop. Let us call the neural command u measured in units of pulse per second

(PPS), the joint angle �, measured in radians (rad), the muscle and arm function

f ðuÞ, and the muscle-spindle function gð�; �Þ; then, one can write the model

mathematically as

� ¼ f ðuÞ ¼ f ½�þ gð�; �Þ�: ð10:1Þ
In the general case, one can consider the signals uðtÞ, and the arm and muscle-spindle

as dynamic nonlinear time varying operators, f [uðtÞ; t], g½�ðtÞ; �ðtÞ; t�. Moreover,

the motor neurons dynamics could be described in more details than the simple
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summation of two firing rates in Eq. (10.1), however, this would requires additional

blocks in the block diagram. Here, we just illustrate the relation between block dia-

grams, mathematical equations and the related physiological signals, and for that

purpose, let us consider the steady state, in which each level of firing rate of motor

neuron is mapped to specific joint angle, and each joint angle is mapped to specific

muscle spindle firing rate.

The simplest implementation of this model is selecting arm and muscle function

determining the angle to be related to the muscle shortening, f ðuÞ ¼ ku, where k is a

constant describing this linear relation with units of [rad/PPS]. Similarly, let us

model the muscle spindle as a simple summation of the gamma activity with the

muscle length which is in turn proportional to the joint angle. In the following

equation, the constant, c, represents this proportion and unit transformation

between joint angle and firing rates at the muscle spindle, relative to the gamma

firing rate, and therefore its units are [PPS/rad].

� ¼ �k�� kðc�þ �Þ; ð10:2Þ

�ð1þ kcÞ ¼ �kð/ þ�Þ: ð10:3Þ
This extremely simplified selection of operators can already predict the relation

between the joint angle and the neural command; however, it does not address the

system dynamics, or its nonlinearities. This can be addressed using the same block

diagram, but with dynamic system in the form of mathematical model in each block.

Linear dynamic systems can be described by the impulse response and the Laplace

transform, as elegantly done by McRuer et al. [97]. Block diagrams can be also

enhanced by being more specific, e.g., replacing the block titled muscle and joints

with two blocks representing the muscle as the force generator that moves the joints.

This possibility raises another problem with block diagrams: the blocks are uni-

directional, whereas the force in the muscles does not only determine the angle, but

it is also influenced by the joint angle. This should be very carefully examined, and

in some cases, a solution to the problem is to replace the classical input/output

formulation with a two-port system. A block diagram along with the exact math-

ematical function of each block can be refuted or supported using physiological

data. For example, behavioral data of measured joint angles in a well defined

task can be used to either support or refute specific models of the arm and the

joint. In more sophisticated computational models (Figs. 2 and 3), one can formulate

a hypothesis about the neural structure that implements each block, and test it by

means of fMRI, or by direct recording of the neural activity. Note that the latter

requires additional assumptions as to the nature of the neural code. This is another

important open question in neuroscience, but it is out of the scope of this review.

In summary of this detour, as any scientific hypothesis, a block diagram along with

its proposed mathematical expressions can be either supported or refuted using

physiological data, such as behavioral measurements, muscle activations, and

neural signals.
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Let us return to the issue of redundancy. Optimal control can be considered as a

solution for the problem of redundancy, e.g., by minimizing the norm of the control

signal, pseudo-inverse can be used to replace the inverse model block in a non-

invertible redundant system (Fig. 2(a)). However, the real challenge, in my opinion,

is to understand how the brain uses different solutions under different circum-

stances. Multiple internal models [56, 160] might be the key to represent multiple

solutions to the same goal [73]. Nevertheless, the criteria for selecting one of the

multiple solutions under various cases are open for future research.

According to Bernstein, redundancy is a key property unique to biological sys-

tems compared to artificial systems (of his time). Today, a few artificial systems

employ redundancy and then exploit it, usually for robustness. However, there is

still a vast potential in imitating technology to learn from the biological motor

control system about exploiting the virtue of redundancy. Therefore, answering this

question has wide scientific as well as technological and medical potential benefit.

Clearly, there are many open questions I failed to list. These include the use of

robust control and other engineering approaches not yet adopted by the compu-

tational motor control community, and many other computational models devel-

oped to fit specific neural structures. Nevertheless, even with this short list of open

questions, starting from Turing and ending with Bernstein, we have a lot of work

before us as we strive to formulate a reasonable computational model for the motor

system. At the same time, as described in this review, we have made significant

progress during the last few decades, and start to see the fruits of these efforts in new

upcoming technologies of brain machine interfaces and rehabilitation robotics.
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